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Abstract 
 

   The monitoring system for a huge and complex Pressurized Water 
Reactor (PWR) is one of the most important tasks but difficult due to 
dynamic system with a lot of plant signals. The research performed 
previously a development of PWR monitoring system integrated with 
data acquisition system. The combination of neural network and expert 
system (neuro-expert) is utilized to improve the time-process of 
anomaly detection. The advanced research considered the online 
anomaly diagnosis using expert system to complete the monitoring 
system tasks. 
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1. Introduction 
 
   A regulation of smart application for nuclear reactor, NS-G-1.1 was introduced by IAEA due to 
the necessity trend of online smart application in the nuclear reactor. The smart monitoring system 
has applied in some nuclear reactor for supporting the operators with useful information based on 
all reactor signals. In detail, the monitoring system task is to check and analyze the parameter 
signal to implement anomaly detection system, which is proposed to be integrated in the 
reactor-safety system. The application of neural network using back-propagation algorithm was 
done in several problems1). In case of nuclear reactor application, the combination of neural 
network and expert system techniques already have been applied to online plant monitoring and 
shown good performance for early anomaly detection by Nabeshima et all2). In addition, in real 
case, neuro-expert also has been applied at Borselle PWR in Netherlands with off-line test by 
Nabeshima et al3).  
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   However, monitoring system must have adequate computer engine and method to compute and 
monitor some complex parameters in real-time mode. The calculation using nuclear physic 
methods in today’s most powerful computer still have time-lag calculation process and difficult for 
real-time monitoring. The using of neural network simplifies the model to approach directly the 
input-output mapping and memorize the knowledge in network weights during learning.  
 

 
Fig.1 Surry-1 simulator schema [3]. 

 
   In this research, the monitoring system utilizes 22 inputs of reactor parameter taken from 
data-acquisition simulation and transfers the input signals to neuro-expert engine to determine the 
reactor operation condition. Anomaly test using the data of PWR simulator, Surry-1, USA 
(722MWe) was done as well as the previous research by Nabeshima with different type of neural 
network. The simulator schema is shown in Fig. 1. SG-B indicates steam generator loop B and 
SG-C indicates steam generator loop C. The primary loop consists of hot leg temperature (HLT-B 
and HLT-C) and pressurizer (PRZP). The secondary loop consists of steam pressure (SP), steam 
flow (SF), feed water flow (FWF), feed water pressure (FWP), and also steam generator level 
(SGB-L and SGC-L). However, the neural network itself can merely detect an error from the 
normal state, and needs an interpretation of the error by an expert to diagnose the causes3). The 
research developed the prototype of monitoring system including data acquisition system, 
server-client with TCP-IP communication in a full-integration distributed architecture as well as the 
application for the High Temperature engineering Test Reactor (HTTR) 4,5). The exploring of the 
method development has started for anomaly detection using neural network with simple expert 
rules6). The other development that more advanced than the development of HTTR monitoring 
system is in progress and the new methods of Time Synchronizing Signal Multilayer Perceptron 
(TSS-MLP) and Time Delayed Jordan Recurrent Neural Network (TD-Jordan RNN) for special 
case have also introduced for pursuing and exploring the technology of monitoring system 5,7).  
   Focusing to the anomaly diagnosis, some difficulty may cost trouble to the monitoring system.    
The problem of dynamic model degradation should be considered in which the learned pattern and 
the dynamic model are unmatched due to the operating condition has changed over time. The initial 
learning should be updated and the re-learning should be carried out to anticipate the degradation. 
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Indeed the neural networks require long time learning times and offline calculation. Another 
problem is anomaly diagnosis after given alert and it is difficult to determine the anomaly cause by 
alert only. The proposed method of neuro-expert is a combination of neural network and expert 
system as well as done in previous research for neuro-expert using recurrent neural network 
(RNN)3) and multilayer perceptron (MLP) with simple expert rules4). The neural network will 
detect the anomaly early and give alert when channel fault detected. Parallelly, the expert system 
diagnoses the alert information and gives determine the anomaly cause. The research aims to 
improve the previous MLP development with advanced expert rule as a complete method for 
anomaly diagnosis. 
 
 

2. Anomaly Detection Using Neural Network 
 
2.1 Backward pass and forward pass of neural network 
 
   The neural network consists of two passes through the different layers of the network: a 
forward pass and a backward pass (shown in Fig. 2). In the forward pass, an input vector is applied 
to the network sensory nodes, and its effect propagates through the network layer by layer. The 
linear combiner output is 
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Fig.2 Backward pass and forward pass of neural network. 

 
   Finally, a set of outputs is produced as the actual response of the network. During the forward 
pass the synaptic weight of the network are all fixed. During the backward pass, the synaptic 
weights are all adjusted in accordance with an error correction rule. Specifically, the actual 
response of the network is subtracted from a desired response to produce an error signal. The 
difference of the desired output dj and the calculated output οj gave an error signal ej. This error 

dj
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signal is then propagated backward through the network against the direction of synaptic 
connection as known error back-propagation algorithm. The synaptic weights are adjusted to make 
the network actual response move closer to the desired response in a statistical sense. 

The adjustment of network weight based on backpropagation algorithm is using the equation 
below: 
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where i is input index, j is output index, and η is learning rate for an active neuron. The principle of 
backpropagation is the local gradient δj for output neuron j that equals to the corresponding error ej 
and the derivative aj of the associated activation function. Then the network weights are fixed by 
equation: 

)()()1( twtwtw ∆+=+       (4) 

Network iterations search an optimum weight based on error correction. This process is called 
learning of neural network.   
 
2.2 Initial learning 
   The neural network needs initial learning data of operating PWR at normal condition and finds 
the optimum intelligence knowledge correlated with optimum weight. However, the monitoring 
performance is also given by the learning and in the future, there is some possibility to re-learn 
other operation data and update the memory displacement for long period, because the dynamics of 
the plant can be changed.  

Table 1 PWR channel. 
Channel Signal Name Unit 

1 Ex-core neutron flux-A % 
2 Ex-core neutron flux-B % 
3 Ex-core neutron flux-C % 
4 Ex-core neutron flux-D % 
5 Average coolant temperature °C 
6 Pressurizer pressure % 
7 Volume control tank level % 
8 Turbine impulse pressure % 
9 Steam generator level (B) % 
10 Steam generator level (C) % 
11 Steam flow (loop-B) t/h 
12 Steam flow (loop-C) t/h 
13 Feed water flow (loop-B) t/h 
14 Feed water flow (loop-C) t/h 
15 Main steam header pressure % 
16 Feed water pressure % 
17 Hot-leg temperature (loop-B) °C 
18 Hot-leg temperature (loop-C) °C 
19 Steam pressure (loop-B) kgf/cm２ 

20 Steam pressure (loop-C) kgf/cm２ 

21 Average neutron flux % 
22 Reactor power MW 
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   In the initial learning, every dataset pattern consists of 22 input signals to perform 22 
monitoring channel objects. The input signals are also normalized in [-1, 1] before entered to neural 
network to make all the input elements lie normally between 1 and -1. Table 1 show the PWR 
channel which used in the research as neural network inputs and outputs. 
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Fig.3 Initial learning dataset. 

 
Table 2 Result of Initial learning. 

Channel Min Value Max Value Square Error Max Error [%] Fault Level [%] 
1 37.758 98.688 0.142 1.866 3.0 
2 37.782 98.681 0.137 1.761 3.0 
3 37.724 98.740 0.140 1.725 3.0 
4 37.240 98.679 0.130 1.669 3.0 
5 293.50 302.73 0.000 0.092 1.0 
6 33.374 46.347 0.048 0.975 1.5 
7 49.486 70.827 0.038 0.491 1.0 
8 15.387 36.440 0.077 1.169 3.0 
9 43.518 45.825 0.003 0.154 1.0 

10 43.544 45.819 0.003 0.252 1.0 
11 650.51 1591.9 0.079 1.078 3.0 
12 650.55 1590.1 0.080 1.076 3.0 
13 672.97 1600.3 0.076 1.185 3.0 
14 673.44 1601.1 0.073 1.272 3.0 
15 51.077 61.466 0.012 0.619 1.5 
16 78.409 94.592 0.005 0.231 1.0 
17 301.53 319.64 0.001 0.099 1.0 
18 301.50 319.60 0.001 0.106 1.0 
19 52.527 62.007 0.010 0.577 1.5 
20 52.547 62.040 0.010 0.569 1.5 
21 37.574 98.346 0.139 1.782 3.0 
22 436.50 837.00 0.062 0.934 1.5 
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   The used dataset for learning consist of 1037 patterns of 1.5%/min power decreasing, 446 
patterns of 3.5%/min power decreasing, 37 patterns of 100% steady state power and 37 patterns of 
50% steady state power operation. Total pattern number in a dataset is 1557. The initial learning 
dataset has converged as shown in Fig. 3. The learning with random order input for every iteration 
cycle was carried-out. 
   The convergence is less than 2% of maximum error after 600 iteration cycles or epoch. The 
initial learning results are showed in Table 2. The maximum error is 1.866% with mean square 
error of 0.142%. Here, the maximum error is defined as maximum deviation between the offline 
measured signals and the corresponding values predicted by neural network. The error is expressed 
in percentage to show the comparison of deviation value to the measure value. In the online 
monitoring, the small deviation indicates the reactor operation is normal. In contrary, higher 
deviation than the setting fault level indicates the anomaly in the reactor operation. Furthermore, 
the maximum deviation or error should be given to give a critical decision between normal 
condition and anomaly condition, named fault level. The given fault levels were decided by below 
expression: 

− If maximum error in channel less than 0.5%, fault level is 1.0%, 
− If maximum error in channel less than more than 0.5% and less than 1%, fault level is 

1.5%, 
− If maximum error in channel less than more than 1% less than 2%, fault level is 3.0%. 

 
 

3. PWR Anomaly Detection Test 
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Fig.4 Anomaly detection test using neural network. 

 
   The simulation test for determining the anomaly condition was done. An anomaly sample as 
described in Fig. 4 is taken from signal number 6 for pressurizer pressure parameter monitoring; 
fault level error was set to 1.5%. This anomaly sample simulated small reactor coolant system 
(RCS) leak anomaly at 100% operation. Anomaly was successfully detected quickly. The 
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measurement value comparing with predicted value of neural network indicated the error or 
deviation and the expert system diagnosed the deviation value and the alert position to decide the 
anomaly condition, when the deviation was getting higher than fault level boundary. At the same 
time, monitoring application gives an alert and an anomaly determination result message to 
operator after the diagnosis process finished. When an anomaly was happened, one warning 
indicates an anomaly, but with time process running, the anomaly condition become serious 
anomaly spread to the other anomaly. A serious anomaly condition for small RCS is happened after 
77 second from first pressure anomaly detected.  
   Figure 4 shows anomaly detection test using neural network. The anomaly detection for offline 
data of small RCS leak 50 gallon/min was demonstrated by the developed prototype. The anomaly 
was detected in 34 seconds with the deviation of pressure level (channel 6) exceeding the setting 
fault level, faster than conventional alert which has respond time of 5 minutes 30 seconds for the 
same case. If the fault of feedwater pressure signal (channel 16) was detected after channel 6 
anomaly, the expert system may determine the anomaly cause with the related accident rule. The 
same pattern may be used for diagnose other anomaly, but the system need more advanced method 
to diagnose drift error. 
 

Table 3 Anomaly detection test at 100% steady state operation. 

Detection Time [minute: second] 
Case 

number 
Anomaly Simulation Conventional 

Alert 
Neuro-Expert 

Alert 

1 Small Reactor Coolant System Leak 100 Gallon/min 01: 49 00: 18 
2 Small Reactor Coolant System Leak 50 Gallon/min 05: 30 00: 34 
3 Leakage of Atmospheric Steam Dump Valve 100% 00: 34 00: 02 
4 Leakage of Atmospheric Steam Dump Valve 50% 01: 58 00: 02 
5 Partial Loss of Feed Water 3x453.6 Ton/hour 03: 44 00: 02 
6 Volume Control Tank Level Control Fails Low 00: 01 00: 02 
7 Steam Generator Level Control Fails in Low Direction 00: 01 00: 02 
8 RTD Failure High in Cold Leg of Loop A 02: 00 00: 02 
9 “C” Steam Generator Tube Rupture 01: 00 00: 10 
10 Pressurizer Spray Control Valve Fails Open 10: 34 00: 34 
11 Both Pressurizer Spray Control Valve Fails Close 03: 59 02: 06 
12 Dropped Reactor Control Rod P6 Control Bank A 00: 01 00: 02 
13 Turbine Governor Valves Fails Closed 00: 02 00: 01 

 
   Focusing to the detection test results, Table 3 shows the complete anomaly detection tests 
during 100% steady state condition. The test results showed that neuro network has better 
time-respond than conventional system in anomaly condition for all cases, because the application 
has efficiency and robustness due to system simplification. The detection sensitivity and precision 
is adjustable in fault level setting. Complement advanced programming improved the application 
prototype to have a high compatibility to communicate with other secondary or redundancy 
application using TCP-IP technology. Hence the prototype may support wide-scale monitoring 
system applied multi-agent based on distributed architecture4). 
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4. Application Development 
 
   The monitoring viewer developed on windows is shown in Fig. 5, where the monitoring data is 
shown based on sampling time. Anomaly warning is showed by red flicker alert in graphical user 
interface. The information is completed by the analysis result given by expert system after a few 
second to get adequate information of other alert. The expert system processes the channel position 
of the alert and matches the rule order to decide the anomaly cause. The detection time of an alert 
affected by an anomaly signal has mentioned in Table 2 to knowing the application responds. 
   If the anomaly signal is detected at certain channel number, the expert system diagnoses the 
increased deviation of the operating parameter determined by neural network and the measurement 
result. If malfunction started; the application could send an alert and localize the malfunction 
position in the power plant instrument. Faster information to the operator after malfunction started 
gives more time for operator act to anticipate the anomaly so that bigger damage caused by its 
anomaly is avoidable. 
 

 
 
 

Fig.5 Developed monitoring system panel. 
 
      Figure 5 shows the prototype panel of monitoring system. In the panel, the operator will 
receive clear information of power plant condition virtually. The table in right side of Fig. 5 shows 
the signal quantity of error in percentage and gives red area caution if the error exceeded the fault 
level. The analysis aid by expert system is still limited to the simple rule to study the neural 
network respond time and alert characteristic affected by anomaly detection. 
   In the real condition, expert system should be enhanced to distinguish the drift deviation 
defined as slow rate of deviation increase change, and drastic change of deviation increase. The 

Error monitoring for interest channel 6 Alert has shown in channel 6 
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research investigated the drastic change of deviation increase and the respond time of neural 
network. Other case of online validation is possible to work parallel for the signal from neutron 
flux sensors, but for other signal is difficult due to redundancy signal input. 
 
 

5. Expert System Role for Anomaly Analysis 
 

   The arrangement of expert rule requires an anomaly pattern given by some anomaly detection 
testing. Table 4 shows the specific characteristic of anomaly detection using neural network for 
expert rule development. The neuro-expert gives alert at firstly a channel fault detected, and 
identifies the cause of that anomaly by the knowledge matching involved in expert rule, for 
example:  

− if operating at steady state 100%,  
− and if fault of channel 6 was detected,  
− and if fault of channel 7, 22 was detected with the flow time from first detection to second 

detection is about 46 minutes.  
− Then “The small RCS leak 50 gallon/min” will be detected. 

 
Table 4 Specific characteristic of anomaly detection using neural network for expert rule development. 

Detection Time and Channel Fault 
Case 

Number First  
(time after malfunction started) 

Second  
(time after first fault) 

Third 
(time after second fault) 

1 00:18 CH: 6  
Small error 00:22 CH: 7, 22 

Small error  No need expert rule 

2 00:34 CH: 6 
Small error 00:46 CH: 7, 22 

Small error  No need expert rule 

3 00:02 CH: All,  
Error for CH 1,2,3,4,8 >10% 00:02 CH: All, error increase - 

decrease  No need expert rule 

4 00:02: CH: 6, 7, 11, 12, 16, 22 
Small error 00:02 CH: All,  

small error  No need expert rule 

5 00:02: CH: 1, 3, 4, 13, 14, 16, 21, 22. 
Error CH 13, 14 > 10% 00:02 CH: 11, 12 

Error CH 16 > 10% 00:02 CH: 7 
Error CH 13, 14 > 20% 

6 00:02 CH: 1, 2, 3, 4, 6, 7, 16, 21 
Error CH 7 > 35%  No need expert rule  No need expert rule 

7 00:02 CH: All except CH 5,9,10,17,18
Error CH 14 > 20% 00:02 CH: All except CH 5,10 

Error CH 14 > 25% 00:02 CH: All except CH 5 
Error CH 14 > 25% 

8 00:02 CH: 5, 7, 9, 10 
Small error 00:10 CH: 16 

Small error 00:16 CH: 1, 2, 3, 4, 8, 15, 21, 22
Small error 

9 00:10 CH: 6 
Small error 00:16 CH: 7 

Small error 00:06 CH: 1, 2, 3, 4, 21, 22 
Small error 

10 00:34 CH: 6 
Small Error 00:36 CH: 7 

Small Error 01:00 No CH detected 
Small error for CH 6, 7  

11 02:06 CH: 6 
Small Error 03:20 CH: 7 

Small Error 00:24 CH: 1, 2, 3, 4, 21 
Small Error 

12 00:02 CH: 1, 2, 7, 8, 21 
Small Error 00:02 CH: 3, 4, 9, 10 

Error for CH 2 > 38% 00:02 Error for CH 2 > 42% 
Error for CH 21 > 15% 

13 00:02 CH: All except CH 5, 9, 10, 17, 
18, 22. Small Error 00:02 Error for CH 8 >15% 

Error for CH 13, 14 > 10%  No need expert rule 

CH: Channel 
Time is described in minute:second 

    
   The expert rule in programming processes the knowledge in Table 4 become forward chaining 
above. The complete expert system's rule base in application is made up of many such inference 
rules. An inference rule is a statement that has two parts, an if-clause and a then-clause. The rule is 
what gives expert systems the ability to find solutions to diagnostic and prescriptive problems. It is 
possible to understand how the diagnosis was reached from the drawn rule. However, avoiding the 
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change of setting fault level is necessary to keep stable the accuracy of expert rule because the 
setting change will trigger the other channel alert, change the alert rule characteristic, and impair 
the diagnosis result. 
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Fig.6 The coupling method of neural network and expert system. 

 
   Figure 6 shows the coupling method of neural network and expert system. For real 
implementation, the monitoring system requires data acquisition to get the raw signal from selected 
sensor. The signal conditioning circuitry for general measurement is fairly straightforward. It 
consists of the signals itself (come from each sensor), an instrumentation isolated amplifier to boost 
the sensor’s signal level and isolate its signals, a low pass filter to reduce noise and prevent aliasing 
in the data acquisition system, and finally, simultaneous sample and hold circuitry to keep the 
signals properly timed with respect to each other. After data acquisition, the digital data could be 
utilized by the developed application of neuro-expert. 
 

 
6. Conclusion 

 
   The anomaly diagnosis method using neuro-expert for real-time PWR monitoring system has 
been developed. The anomaly detection tests were demonstrated using the output of Surry-1 PWR 
simulator. Maximum error of initial learning is 1.866% and the fault level was concluded with a 
simple expression to determine the critical value for anomaly detection. The neuro-expert system 
detected the anomaly faster than the conventional alarm system. The expert rule approached the 
knowledge of neural network characteristic during anomaly detection and the processed knowledge 
becomes inference rule in expert system application. In the future works, the prototype of 
monitoring system could be applied to the actual real-time data acquisition system which is online 
to PWR instruments. 
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