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Abstract 
 

   The Transfer Influence Coefficient Method is an advantageous device used 
to analyze a dynamic response of a multi degree of freedom system. The 
Transfer Influence Coefficient Method conquered some disadvantages of the 
Transfer Matrix Method and has some advantages in computational accuracy 
and speed. However, this method was not available to treat truss and rahmen 
structures since the algorithm was incapable of branches and links to form a 
closed loop in truss and rahmen structures. In this paper, a new algorithm of the 
Transfer Influence Coefficient Method for an in-plane free vibration analysis of 
frame structures with closed loops is presented. The new algorithm still retains 
the advantages of the original algorithm on the computational accuracy and 
speed. The advantages are demonstrated through a free vibration analysis, 
compared with a conventional routine. 

 
Keywords: Computational method, Truss structure, Pin joint, Free vibration, 
Transfer Matrix Method, Transfer Influence Coefficient Method 

 
 

1. Introduction 
 
   A large scale structure such as a skyscraper or a long spanning bridge is sensitive to strong 
winds and earthquakes. A dynamic response analysis of the structure is indispensable to help 
prevent destruction and to aid in the inquiry of accidents. Since the structure has a large degree of 
freedom, a great deal of computational cost is still required even if a currently developed computer 
is utilized. In order to overcome this difficulty, some devices to reduce the degree of freedom were 
proposed. The most popular method seemed to be the modal analysis1)-3). Several characteristic 
modes corresponding to low natural frequencies were usually employed to the modal analysis. The 
condensation method4) is an alternate and is often implemented. Some devices to improve the static 
condensation method were proposed5)-7), and showed a better performance than the simple static 
method. In addition, some studies utilized very simplified models, which were intuitively modeled 
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as several degrees of freedom systems8),9). However, it is difficult for any methods to estimate the 
errors between the reduced model and the real structure. In the case of modal reduction, a 
pretreatment to compute the characteristic modes took considerable computational costs. Thus, 
computational algorithm with high speed is desirable in order to realize a dynamic response 
analysis of a large scale structure without a reduction in the degree of freedom.  
   The Transfer Matrix Method (hereafter: TMM)10) is one of the applicable methods. But the 
TMM is only available to such a structure as illustrated in Fig. 1(a), in which the structure starts 
with one end and terminates with another end. In addition, the TMM has some disadvantages in 
treatment of rigid supports and a computation of high frequency range. A deterioration of 
computational accuracy happens in such cases. In the worst case, the numerical computation 
diverges.  
   Sueoka (one of the authors) et al. presented an alternate method, the Transfer Influence 
Coefficient Method (hereafter: TICM)11),12). The TICM has an advantage in computational accuracy 
and speed. A remarkable feature of the TICM is its controllability on various boundary conditions 
only by means of an adjustment of spring constants. No numerical instability happens even if the 
spring constants become very large, and computational accuracy can be maintained. Such a 
treatment is inapplicable to the TMM. This advantage of the TICM is also retained in a 
computation of high frequency range. Furthermore, the TICM has a high computational speed since 
the dimensions of matrices and vectors used in the algorithm are smaller than the ones of the TMM. 
The TICM is defeating the disadvantages of the TMM and is applicable to free vibration, forced 
vibration, transient response, and nonlinear response. However, the treatable structure of the TICM 
was the same as the TMM. The TICM was not capable of a frame structure schematically 
illustrated in Fig. 1(b). The structure includes branches and links to form some closed loops, which 
are essentially involved in truss and rahmen structures. The original TICM was not able to treat the 
branch and link so that truss and rahmen structures were not treatable.  
   In this paper, a new algorithm of the TICM to treat a frame structure with closed loops is 
presented. New concepts to treat the branch and link are innovated in the algorithm and make the 
TICM applicable to a structure which involves closed loops in itself. The new algorithm still retains 
the advantages of the original TICM. A pin joint, which is usually modeled as a joint of truss 
structure, is easily realized only by an adjustment of a spring constant. Such a treatment is not 
suitable for conventional methods. In addition, computational costs, i.e., storage and time, are 
reduced by the new algorithm of the TICM, compared with a conventional routine. It contributes 
greatly to a practical use. The advantages of the TICM are demonstrated through some numerical 
computations.  
   Although the algorithm in this study is restricted within an in-plane free vibration of  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Schematic diagram of an analytical model. (a) Typical model of the TMM and original TICM and  
        (b) in-plane frame structure with branches and connections.  
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two-dimensional frame structure in order to simplify the description, the algorithm can be easily 
extended to three-dimensional structures. Forced vibration, transient response and nonlinear 
response are also treatable.  
 

2. The Original Algorithm of the Transfer Influence Coefficient Method 
 
   The algorithm of the original TICM on the free vibration analysis is briefly mentioned in this 
section because it is a fundamental part of the new algorithm. A beam structure with no branches 
and links illustrated in Fig. 1(a) is a typical model for the original TICM. A lumped mass system is 
employed as an analytical model in this paper, but distributed mass modeling is also available. The 
model is formed by a connection of massless beams and rigid bodies in series. Each rigid body is 
called "Node" and the left- and the right-hand ends of the system are defined as node 0 and node n, 
respectively. The beam element between the nodes j and j-1 is called the j-th beam element. Some 
rigid bodies are supported by base support elements (BSE). The variables with head symbols and 
subscripts have the following principles.  
   (1) Variables with subscript j represent the physical quantities related to node j or j-th beam 
element.  
   (2) Variables with head symbol “ ^ ” represent the physical quantities related to a base support 
element.  
   (3) Variables with and without head symbol “ − ” represent the physical quantities on the left- 
and the right-hand sides of node, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Schematic diagram of analytical model. (a) Connection of a fundamental element and  
             (b) definition of the positive direction of the state variables.  
 
   A connection of ( j+1)-th fundamental element to the right-hand side of the node j is shown in 
Fig. 2(a). The ( j+1)-th fundamental element consists of the ( j+1)-th beam element, a rigid body 
and a base support element. This is the concept of the original TICM. Details of the ( j+1)-th 
fundamental element and definition of the positive direction of the state variables are indicated in 
Fig. 2(b). The system is assumed to be oscillating at an angular frequency ω, and xj+1, yj+1 and θj+1 
are the amplitudes of axial, lateral displacements and rotation. Fx,j+1, Fy,j+1 and Nj+1 are the 
amplitudes of axial force, lateral force and bending moment. The relationship of the state variables 
between both ends of the ( j+1)-th beam is represented as:  

 T
1 1 1 1 1 1( ) ,j j j j j j j j+ + + + + += + =d L d F f f L f      (1) 

where right-hand superscript “ T ” denotes transpose and  
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lj+1, (EA)j+1 and (EI)j+1 are length, tensile rigidity and flexural rigidity of ( j+1)-th beam. The 
equation of motion of ( j+1)-th rigid body is represented as:  

 1 1 1 1j j j j+ + + ++ =f P d f        (2) 

where  

 2
1 1 1 1 1 1 1

ˆ ˆˆ ˆ ˆ, diag( , , ) , diag( , , )j j j j j j x y jm m J k k Kω+ + + + + + += − = =P K M M K  

mj+1 and Jj+1 are a mass and a moment of inertia of the ( j+1)-th rigid body (node). , 1
ˆ

x jk + , , 1
ˆ

y jk +  
are linear spring constants of the x- and y-directions, respectively, and 1

ˆ
jK +  is a rotational spring 

constant.  
   In the formulation of the TICM, a relationship between the displacement vector and the force 
vector at node j is defined as: 

 j j j=d T f         (3a) 
 j j j=d T f         (3b) 

where jT  and Tj are the dynamic influence coefficient matrices of the left- and the right-hand 
sides of node j, respectively. These matrices are usually symmetrical. In the algorithm of the TICM, 
the matrices jT  and Tj are successively computed from node 0 to node n.  
   Substituting Eq. (3b) into Eq. (1) and comparing with Eq. (3a) with subscript j+1, we obtain  

 T
1 1 1 1( )j j j j j+ + + += +T L T L F       (4) 

Eliminating 1j+f  from Eq. (2) by utilizing Eq. (3a) with subscript j+1 and comparing with Eq. 
(3b) with subscript j+1, we obtain  

 3 1 1 1 1( )j j j j+ + + ++ =I T P T T       (5) 

where I3 is a 3×3 identity matrix. The matrices 1j+T  and Tj+1 are obtained from Tj through Eqs. (4) 
and (5) in turn. Furthermore, successive operations of Eqs. (4) and (5) yield 1 1, , , ,j j n n+ +T T T T…  
recursively. The formulations (4) and (5) are called the "field transmission rule" and the "point 
transmission rule", respectively. The initial dynamic influence coefficient matrix T0 at node 0 is 
needed first for the successive operations. This matrix is derived from the equilibrium of forces at 
node 0 as:  

 0 0 0 0 0 0 0 0 3,= ⇒ = =P d f d T f P T I      (6) 

Consequently, the dynamic influence coefficient matrices are computed in turn from node 0 to node 
n by Eq. (6) and recursive operations of Eqs. (4) and (5).  
   After the computation of Tj ( 0j n= → ), substituting Eq. (3a) into Eq. (2) with subscript n, we 
obtain the relationship of the force vectors at node n.  

 3( )n n n n+ =I P T f f        (7) 

Since the right-hand side of node n is always free, the force vector at the right-hand side of node n 
is zero: n =f 0 . Conversely, the left-hand side of node n is not free, that is n ≠f 0 . Thus, the 
frequency equation is given by  
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Fig. 3 Asymmetric poles and zeros of G'O(ω).  
 

 3( ) det( ) 0O n nG ω′ ≡ + =I PT       (8a) 

An angular frequency ω  that satisfies Eq. (8a) is a natural angular frequency. The frequency 
equation (8a) is classified as a determinant method. The bisection method is usually employed to 
solve the determinant method. However, the frequency equation ( )OG ω′  has asymmetric poles as 
shown in Fig. 3 (solid line), which are regarded as pseud-solutions of ( ) 0OG ω′ =  in a simple 
application of the bisection method. In our previous study12), it was confirmed that the asymmetric 
poles are generated at 3det( ) 0j j+ =I T P  ( 1, ,j n= … ) and 0det 0=P . In other words, the 
asymmetric poles are generated in the cases that the simultaneous equations of the point 
transmission rule [Eq. (5)] and the computation of T0 [Eq. (6)] become singular. Hence, the 
asymmetric poles are transformed into symmetric poles by means of inversion of plus and minus of 

( )OG ω′  at the points of 3det( ) 0j j+ =I T P  and 0det 0=P  as illustrated by broken line in Fig. 3. 
The modified frequency equation is given as follows.  

 0 3
1

( ) det det( ) 0
n

O j j
j

G ω
=

≡ + =∏P I T P      (8b) 

where the symmetry of the matrix nT  and Pn are utilized. The computation of 3det( ) 0j j+ =I T P  
and 0det 0=P  are accompanied with the Eqs. (5) and (6), so that no computational costs increase. 
Only the zeros of ( )OG ω  are obtained by a simple application of the bisection method to Eq. (8b).  
   Once a natural angular frequency is obtained from Eq. (8b), the force vector nf  is determined 
by Eq. (7) with one fixed element (usually 1) since n =f 0 . The displacement vector at node n is 
given by n n n=d T f . The rest of the displacement vectors are recursively obtained from node 1n−  
to node 0 by applying the following equations, which are derived from Eqs. (1), (2) and (3b).  

 1 1 1 1 1 1 1 1, , ( 1)j j j j j j j j j j j n− − − − − − − −= = = − = →f L f d T f f f P d    (9) 

Finally, all the displacement vectors ( 0)j j n= →d  correspond to a characteristic mode.  
   The algorithm of the TICM is available if the spring constants ,

ˆ
x jk , ,

ˆ
y jk  or ˆ

jK  become very 
large because the TICM treats the physical quantities as influence coefficients (inverse of rigidity). 
The TICM is also available if the spring constants are equal to zero. Apparently Eqs. (4) and (5) are 
available in such a case, and Eq. (6) is also available because an inertial term 2

0ω− M  always 
exists in P0. The TICM is numerically powerful in any situation and keeps high computational 
accuracy. This character comes to the advantage of the TICM that various boundary conditions are 
realized only by an adjustment of spring constants.  
 

3. New Algorithm of the Transfer Influence Coefficient Method 
 
   A large scale frame structure such as a long span bridge consists of several main systems, and 
subsystems which link the main systems to each other. An example is diagrammatically illustrated 
in Fig. 4. It represents a general in-plane frame structure which includes branches and links to form 
closed loops. A lumped mass system is also applied to model the system, and the number of the  
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Fig. 4 Concept of the newly presented TICM.  
 
main system is assumed to be n. A subsystem branches from a certain point of the main system and 
links to the other main system. Although a case that a subsystem branches further into two or more 
system is available, the algorithm in this paper is formulated on the assumption that only a main 
system branches. The system is partly supported by a base support element, which is not depicted 
in Fig. 4.  
   In the new algorithm, a dynamic influence coefficient matrix is defined as well as the original 
algorithm. The computation of the dynamic influence coefficient matrix also begins at the left-hand 
side of the system, and proceeds to the right-hand side of the system as a whole. The rigid bodies 
are also defined as node 0, 1, ··· , in turn from the left-hand side of a main system. As for a 
subsystem, node 0 corresponds to a branch point from a main system. Variables with head symbols 
and subscripts in this section are common to Section 2, but variables with superscript “ i ” 
represents the physical quantities related to the i-th main system, and superscript “ sub ” represents 
the ones related to subsystems.  
   The structure enclosed with a broken line in Fig. 4 is defined as a determined structure 
(hereafter: DS). In the DS, only the node j of each main system is allowed to connect with a 
fundamental element, branch, link to a subsystem, etc., as listed in Figs. 4 (a)−(d). The repetition of 
the process leads to the completion of the whole structure. This is a concept of the new algorithm of 
the TICM. In the new algorithm, a relationship between a displacement vector and a force vector of 
the DS is defined as:  

 =d Tf         (10) 

where 

 
1 T T T T 1 T T T T

T T
, ,

{( ) , , ( ) , , ( ) } , {( ) , , ( ) , , ( ) }

{ , , } , { , , }

i n i n
j j j j j j

i i i i i i i i
j j j j j x j y j jx y F F Nθ

= =

= =

d d d d f f f f

d f
  (11) 

The degree of freedom of d and f is 3n, while T is a 3n×3n square matrix.  
 
3.1 Field and point transmission rules 
   Supposing that node j of the i-th main system connects with a fundamental element as shown in 
Fig. 4(a), the field and point transmission rule of Eqs. (4) and (5) are easily extended to this case.  

 T( )= +T L TL F        (12) 
 3( )n ′+ =I TP T T        (13) 

where  
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I3n is a 3n×3n identity matrix and 03 is a 3×3 zero matrix. All the diagonal blocks of L are 3×3 
identity matrices but the i-th block is 1

i
j+L . All the diagonal blocks of F and P are 3×3 zero 

matrices but the i-th block is 1
i
j+F  and 1

i
j+P , respectively. Each of L, F and P is a 3n×3n square 

matrix. The block elements 1
i
j+L , 1

i
j+F  and 1

i
j+P  are represented as a same formula as Lj+1, Fj+1 

and Pj+1 of Eqs. (1) and (2), respectively. These matrices satisfy the following formula, similar to 
Eqs. (1) and (2).  

 T
1 1 1 1 1 1( ) ,i i i

j j j j j j j j+ + + + + += + =d L d F f f L f      (15a) 

 1 1 1 1
2

1 1 1 1 1 1 1
ˆ ˆˆ ˆ ˆ, diag( , , ) , diag( , , )

i i i i
j j j j
i i i i i i i
j j j j j j x y jm m J k k Kω
+ + + +

+ + + + + + +

+ =
= − = =

f P d f
P K M M K

  (15b) 

The dynamic influence coefficient matrices T  and ′T  satisfy the following relationships:  

 1 T T T T 1 T T T T
1 1, {( ) , , ( ) , , ( ) } , {( ) , , ( ) , , ( ) }i n i n

j j j j j j+ +
′ ′= = =d Tf d d d d f f f f  (16a) 

 1 T T T T
1, {( ) , , ( ) , , ( ) }i n

j j j+
′ ′′ ′= =d T f f f f f     (16b) 

The elements of L, F and P are properly substituted if a fundamental element connects to the other 
main system.  
 
3.2 Transformation of coordinates 
 
 
 
 
 
 
 

Fig. 5 Transformation of coordinate.  
 
   The new algorithm of the TICM is formulated on the assumption that the axial direction of the 
beam element coincides with the x-axis. However, all the axial directions of beam elements are not 
the same. Thus, physical quantities have to be treated in a common coordinate. Supposing that the 
coordinate of the i-th main system O- i ix y  inclines against a common coordinate O-xy at an angle 
of α  as shown in Fig. 5, the physical quantities indicated in O- i ix y  are transformed into the 
ones in O-xy. The matrices 1

i
j+L , 1

i
j+F  and 1

i
j+P  indicated in O- i ix y  are transformed as follows:  

 

T
1 1

T
1 1

T
1 1

cos sin 0
sin cos 0

0 0 1

i i
j j
i i
j j
i i
j j

α α
α α

+ +

+ +

+ +

⇒ −⎡ ⎤
⎢ ⎥⇒ =
⎢ ⎥

⇒ ⎣ ⎦

RL R L
RF R F R
RP R P

    (17) 

The discussion in this paper is supposed to be done under the condition that all the matrices 1
i
j+L , 

1
i
j+F  and 1

i
j+P  are transformed by Eq. (17). The displacement vectors, force vectors and dynamic 

influence coefficient matrices are automatically indicated in the common coordinate under the 
transformation.  
 
3.3 Branch transmission rule 
   If the DS in Fig. 4 is fixed, the dynamic influence coefficient matrix T of Eq. (10) is determined. 
A case that a subsystem branches from node j of the i-th main system as shown in Fig. 4(b) is  
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Fig. 6 Diagram of branch.  
 
considered in this section. A schematic diagram of the branch is illustrated in Fig. 6. Although the 
directions of i

jf  and 0
subf  seem to be different from each other, the force vectors are actually 

represented in the common coordinate discussed in Section 3.2. The force vectors in Figs. 7, 9 and 
10 are similarly represented. The subscript “0” of 0

subf  denotes physical quantities of the left-hand 
side of the subsystem. Since the branch generates a new force vector 0

subf , which acts on node j of 
the i-th main system from the subsystem, a new force vector after the branch is defined as follows:  

 1 T T T T T
0{( ) , , ( ) , , ( ) , ( ) }sub i n sub

j j j=f f f f f  

An extra block for the subsystem T
0( )subf  is added to subf . Since node j of the i-th main system 

is subjected to both force vectors i
jf  and 0

subf , the following formula substitutes for Eq. (10) 
after the branch.  

 

3

T 3

3

3 3 3

-th block of column

,sub

i

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I

Id TB f B
I

I

0

0

0 0

     (18) 

where the matrix B is a 3(n+1)×3n matrix.  
   A new displacement vector after the branch is defined according to the definition of subf  as 
follows:  

 1 T T T T T
0{( ) , , ( ) , , ( ) , ( ) }sub i n sub

j j j=d d d d d  

where 0
subd  is a displacement vector of the left-hand side of the subsystem. Apparently 0

i sub
j =d d  

since node j of the i-th main system is identical to the left-hand side of the subsystem. Thus, subd  
is represented as: sub =d Bd . Substituting Eq. (18) into the relation sub =d Bd  yields  

 T,sub sub sub sub= =d T f T BTB      (19) 

The 3(n+1)×3(n+1) square matrix subT  associates the displacement vector subd  with the force 
vector subf , so that the matrix subT  corresponds to a dynamic influence coefficient matrix after 
the branch. We call Eq. (19) the “branch transmission rule”.  
   After the branch, the subsystem extends to node 1, 2, ···, and the field and point transmission 
rules in Section 3.1 are available to the extension. The elements of B are properly substituted if a 
subsystem branches from the other main system.  
 
3.4 Mutual joint transmission rule 
   Supposing that a subsystem branches from a main system (except the i-th main system) and 
reaches node q, the displacement vector of subd  is newly represented as:  

 1 T T T T T{( ) , , ( ) , , ( ) , ( ) }sub i n sub
j j j q⇐d d d d d  
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Fig. 7 Diagram of mutual joint.  
 
Note that 0

subd  in subd  just after the branch discussed in Section 3.3 transfers into sub
qd . The 

dynamic influence coefficient matrix on this condition, which is denoted subT , is obtained through 
the brunch, field and point transmission rules. Then, the node q of the subsystem connects with 
node j of the i-th main system through a connecting element (CE). A schematic diagram of the 
connection is illustrated in Fig. 7. The subsystem links to the i-th main system by the connection, 
which corresponds to a description of Fig. 4(c). We call it a “Mutual joint” in this paper. The i-th 
main system still extends toward the right-hand side of the system after the connection, while the 
subsystem is terminated with the connection. Hence, the node q of the subsystem is only subjected 
to the inner force vector CE

qf , while node j of the i-th main system is subjected to CE
qf  and i

jf . 
The relationship between the displacement and force vector is represented as follows:  

 
1 T T T T

3
T T T

3 3 3

-th block

( )
{( ) , , ( ) , , ( ) ,{0 }}
{ ,{0 }, ( ) ,{0 }, ,{0 }, ( ) }

sub sub sub CE

sub i n
j j j

CE CE CE
q q

i

= +
=

= −

d T f f
f f f f
f f f

    (20) 

where {03}=(0,0,0). The 3(n+1) force vector CEf  represents the inner force from the CE ,while 
subf  represents the force vectors which act on the node j of all the main systems. All the blocks of 
CEf  are zero but the i-th and the (n+1)-th blocks are T( )CE

q− f  and T( )CE
qf , respectively. The 

minus sign of T( )CE
q− f  is due to an opposite definition of the positive direction of CE

qf  to the 
direction of i

jf  in a common coordinate. The (n+1)-th block of subf , which is prepared for the 
subsystem, is zero since the inner force vector CE

qf  is included in CEf .  
   The inner force vector CE

qf  is associated with the displacement vectors i
jd  and sub

qd  as:  

 ( )CE CE i sub
q j q= −f K d d        (21) 

where CEK  represents a stiffness matrix of the CE. Eliminating the inner force vector CEf  from 
Eq. (20) by substituting Eq. (21) yields  

 - 1 -, ( )sub sub i sub mu sub i sub−= + =d T f U T K UT T     (22) 

 

3
3

3
3

3 3 3 3

-th block
of row

-th block of column

,
CE

mu

CE

i

i

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ − ←⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦− ⎢ ⎥⎣ ⎦

I

KU KI

I I K

0 0
0

0

0 0 0 0
 

All the elements of U are zero but the diagonal blocks are I3 besides (n+1)-i block is 3−I . 
Replacing −I3 of U by I3 represents 1−U . All the elements of muK  are zero but the i-(n+1) block 
and the (n+1)-(n+1) blocks are CE−K  and CEK , respectively. The matrix -sub iT , which is derived 
from Eq. (22), is a dynamic influence coefficient matrix after the mutual joint, and we call Eq. (22) 
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the “mutual joint transmission rule”. The elements of U and muK  are properly substituted if the 
subsystem links to the other main system.  
   A formula -

3( 1)( )sub mu sub i sub
n+ + =I T K U T T , where I3(n+1) is a 3(n+1) identity matrix, is possible to 

substitute for Eq. (22), but the formula (22) is desirable because it is free from a numerical 
instability even if the elements of CEK  take large values. It follows that various connecting 
elements, for example a pin joint, sliding, etc., are realized only by adjusting the spring constants of 

CEK . Supposing that the stiffness matrix is represented as diag( , , )CE CE CE CE
x yk k K=K , some 

examples of connecting elements are given as follows:  
 · pin joint : ,CE CE

x yk k →∞ , 0CEK = .  
 · rigid connection : , ,CE CE CE

x yk k K →∞ .  
 · sliding (in the x-direction): 0CE

xk = , ,CE CE
yk K →∞ .  

 · pin joint with sliding (in the x-direction): , 0CE CE
xk K = , CE

yk →∞ .  
In the case that the sliding moves in the y-direction, CE

xk  is alternated with CE
yk . If the direction of 

,CE CE
x yk k  inclines at a angle of α  against the common coordinate O-xy, the coordinate of CEK  

is transformed to the common coordinate as TCE CE⇒RK R K .  
   After the link of the subsystem to a main system, the system consequently returns to the DS of 
Fig. 4 since the subsystem is terminated by the connection. It follows that rearrangements of subd , 

subf  and -sub iT  to eliminate the degree of freedom associated with the subsystem is necessary. 
The vectors and matrix subd , subf  and -sub iT  return to d, f and T in Eqs. (10) and (11) by 
following operation:  

 

3

3

- T

3
,

sub

sub

sub i

⎡ ⎤⇒
⎢ ⎥

⇒ = ⎢ ⎥
⎢ ⎥⇒ ⎣ ⎦

ICd d
ICf f C

CT C T I

0

0 0

     (23) 

where C is a 3n×3(n+1) transform matrix.  
 
3.5 Self joint transmission rule 
   Connecting elements such as pin and sliding do not exist only in a joint between subsystem and 
main system, but also other points in a system. A schematic diagram of the connection in a main 
system or subsystem is illustrated in Fig. 8(a), in which node j of the i-th main system connects to 
next node j+1 through a CE. We call it a “Self joint” in this paper, and it corresponds to a 
description of Fig. 4(d). Supposing that the CE consists of a stiffness matrix CEK  as same as 
mutual joint, the transmission rule through the CE is obtained by eliminating jd  from Eq. (10) 
according to a relationship of 1 1( )i i CE i i

j j j j+ += = −f f K d d  as:  

 
1

3 3

-th block
, Diag[ , , ( ) , , ]self self CE

i

−= + =T T G G K0 0     (24) 

The matrix selfG  is a 3n×3n square matrix. All the diagonal blocks of selfG  are zero, but the i-th  
 
 
 
 
 
 
 
 
 

Fig. 8 Self joint: (a) Diagram and (b) branch point with self joint.  
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block is 1( )CE −K . A direct use of Eq. (24) is unavailable because there is a possibility that the 
stiffness matrix CEK  becomes singular. An available alternate is a concurrent operation of Eq. 
(24) with the point transmission rule Eq. (13). Substituting Eq. (24) into Eq. (13) and multiplying 
the i-th block by CEK  from the left-hand side yields  

 [ ]( )self self self′+ + = +K K T E P T K T E      (25) 

 3 3 3 3 3

-th block-th block
Diag[ , , , , ], Diag[ , , , , ]self CE

ii
= =K I K I E I0 0  

The matrices selfK  and E are 3n×3n square matrices. All the diagonal blocks of selfK  are 3×3 
unit matrices, but the i-th block is CEK . All the diagonal blocks of E are 3×3 zero matrices, but the 
i-th block is I3. Since the matrix ′T  obtained by Eq. (25) is a dynamic influence coefficient matrix 
through the self joint, we call Eq. (25) the “self joint transmission rule”. If the stiffness matrix 

CEK  is similarly represented as diag( , , )CE CE CE CE
x yk k K=K , various connecting elements are also 

realized by adjusting the spring constants as listed in Section 3.4. If necessary, the coordinate of 
CEK  is transformed into the common coordinate.  

   In a truss structure, branch and linking points are usually modeled as a pin joint. A diagram of 
the pin joint at a branch is illustrated in Fig. 8(b), where the CE represents a pin joint. The self joint 
transmission rule is also available in this case, and applied to both the subsystem and the i-th main 
system after the branch. As for a pin joint at a mutual linking, we have already discussed it in 
Section 3.4.  
   Consequently, we have obtained a new algorithm of the TICM, i.e., transmission rules on point 
and field in Section 3.1, a branch in Section 3.3, a mutual joint in Section 3.4, and a self joint in 
this section. Branches and links to form closed loops are treatable by utilizing the branch and 
mutual joint transmission rule. In addition, various connecting elements including a pin joint are 
realized by the mutual and self joint transmission rules with adequately adjusted spring constants. 
Various support conditions of the base support element such as simply support, rigid support, etc., 
are also possible. The support conditions are easily realized by adjusting the spring constants of 

1
ˆ i

j+K  [Eq. (15b)].  
 
3.6 Treatment of the left-hand side of the system 
   A successive computation of the dynamic influence coefficient matrix starts from the left-hand 
side of the whole system. Since the left-hand side of the system consists of the node 0 of each main 
system as shown in Fig. 4, the initial matrix of the dynamic influence coefficient T0 is given in the 
same manner of the original algorithm [Eq. (6)] as follows:  

 1
0 0 3 0 0 0 0, Diag[ , , , , ]i n

n= =P T I P P P P      (26) 

   Generally, there are some routes to compute the dynamic influence coefficient matrix toward 
the right-hand side of the system. In a decision of the route, the most important thing is to keep the 
dimension of the dynamic influence coefficient matrix as small as possible for saving the 
computational cost. A practical example to an analytical model is shown in Section 4.  
 
3.7 Frequency equation 
   Eliminating ′d  from Eq. (16a) by utilizing Eq.(15b), P of Eq. (14) and ′f  of Eq. (16b), we 
obtain  

 3( )n ′+ =I PT f f        (27a) 

which gives a relationship between the force vectors f  and ′f , before and after the point 
transmission rule. Eliminating subd  from Eq. (20) by utilizing Eq. (21), we have  
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Fig. 9 Termination of the system: (a) Case 1 and (b) case 2.  
 

 1 T T T(( ) ( ) ) ( )mu sub CE mu sub sub− + =−U K T f K T f     (27b) 

which gives a relationship between the force vectors CEf  and subf  associated with the mutual 
joint transmission rule. The dynamic influence coefficient matrices are successively computed from 
the left-hand side to the right-hand side of the system. The final step to complete the computation is 
classified into following two cases:  
  (Case 1) : a connection of a node as shown in Fig. 9(a), where node r of the i-th main system is 
the final node to accomplish the whole system.  
  (Case 2) : a mutual joint of a main system and a subsystem as shown in Fig. 9(b), where a 
connection of the node v of the subsystem with node r of the i-th main system is a final process to 
accomplish the whole system.  
   In case 1, Eq. (27a) is available and ′ =f 0  since the right-hand side of the complete system is 
free. In case 2, Eq. (27b) is available and sub =f 0  because of the same reason as in case 1. 
Conversely, ≠f 0  and CE ≠f 0  in cases 1 and 2, respectively. Thus, a frequency equation is 
separately given in each case as:  

 1 T T
1 3 21 ( ) det( ) 0, 2 ( ) det(( ) ( ) ) 0mu sub

nCase G Case Gω ω −≡ + = ≡ + =I PT U K T: :  (28a) 

The determinant 1( )G ω  and 2( )G ω  also have asymmetric poles as well as ( )OG ω′  [Eq. (8a)] of 
the original algorithm. It is desirable to eliminate the asymmetric poles in order to exclude 
pseud-solutions of Eq. (28a). In the newly presented algorithm, the asymmetric poles are also 
generated in the cases that the simultaneous equations of the transmission rules, i.e., Eqs. (13), (22), 
(25) and (26) become singular. Consequently, the asymmetric poles are transformed into symmetric 
poles in the same manner of the original algorithm.  

 
1 2

1 2

3
3

1
0 3

1 1

1

( ) det( ) det( ) det( )

det[ ( ) ] 0

N point N
sub mu

n M M
M M

N
self self

M
M

mu

self

G ω −

= =

=

≡ + +

× + + =

∏ ∏

∏

P I TP U T K

K K T E P

   (28b) 

where Npoint, Nmu and Nself are the number of the point transmission, the mutual joint and the self 
joint, respectively, and where the symmetry of the P, T  and subT  are utilized. The final process 
of Eq. (28b), 3det( )n pointN+I TP  or 1det( )sub mu

muN
− +U T K , corresponds to 1( )G ω  or 2( )G ω , 

respectively. The modified frequency equation (28b) has the following advantages:  
   (1) There is no classification for cases 1 and 2. Both cases are unified in Eq. (28b).  
   (2) The computation of each determinant in Eq. (28b) is accompanied with the transmission 
rules of Eqs. (13), (22), (25) and (26). There are no additional computational costs.  
   (3) Since the asymmetric poles are transformed into symmetric poles, only the plus or minus 
sign of ( )G ω  is treated in a simple implementation of the bisection method.  
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3.8 Characteristic mode 
   The procedure to obtain a characteristic mode is carried out in the reverse order to obtain the 
dynamic influence coefficient matrices. It starts from the right-hand side of the system and 
terminates with the left-hand side of the system. The dynamic influence coefficient matrices, which 
were already obtained, play a roll in obtaining a characteristic mode. Most of the process is 
common in cases 1 and 2 of Fig. 9, but the treatment of the initial point is differs in both cases. The 
initial treatment of each case is separately described as follows:  
   (Case 1) : After the final step of the computation of the dynamic influence coefficient matrix, 
Eq. (27a) is available under the condition of ′=f 0 . Thus, the force vector 

1 T T T T{( ) , , ( ) , , ( ) }i n
r r r ⇒f f f f  is determined by Eq. (27a) with one fixed element, where all the 

right-hand ends of the main system are denoted node r. Substituting the determined f  into Eq. 
(16a) with all subscripts r, we obtain a displacement vector at the right-hand end of the system 

1 T T T T{( ) , , ( ) , , ( ) }i n
r r r ′⇒d d d d . After that, displacement vectors are recurrently obtained in the 

reverse order to obtain the dynamic influence coefficient matrices. In case 1, since the final route to 
compute the dynamic influence coefficient matrices was the i-th main system toward the node r, 
the displacement vectors 1 2, ,i i

r r− −d d  are computed by Eqs. (15a), (10) and (15b) with all 
subscript 1j−  as:  

 1 1 1 1 1, ,i i i i i i i
j j j j j j j− − − − −= = = −f L f d Tf f f P d      (29a) 

Recursive operation of Eq. (29a) with respect to , 1,j r r= −  yields 1 2, ,i i
r r− −d d . Only the i-th 

block of =d Tf  is operated in order to save the computational costs. This operation continues 
until a mutual joint or branch point. For example, the operation continues until node b (branch 
point) in Fig. 10.  
   (Case 2) : The inner force vector from CE T T T

3 3 3{ ,{0 }, ( ) ,{0 }, ,{0 }, ( ) }CE CE CE
v v− ⇒f f f  is 

determined by Eq. (27b) under the condition of sub =f 0 , where one element of CE
v− f  or CE

vf  is 
fixed. Then, the displacement vector 1 T T T T T{( ) , , ( ) , , ( ) , ( ) }i n sub sub

r r r v ⇒d d d d d  is obtained by Eq. 
(20), where all the right-hand ends of the main system are also denoted node r. Computation of the 
displacement vectors of subsystem 1 2, ,sub sub

v v− −d d  follows since the final route to compute the 
dynamic influence coefficient matrices was done in the subsystem. This process is implemented as 
same as in case 1.  

 1, ,sub sub sub sub sub sub sub
j j j j j j j−= − = =f f P d f L f d Tf     (29b) 

Recursive operation of Eq. (29b) with respect to , 1,j v v= −  yields 1 2, ,sub sub
v v− −d d . This process 

also continues until node 0 of the subsystem.  
   Treatment of a branch point, a mutual joint and a process after both points are common to cases 
1 and 2. An example of a branch point is node b in Fig. 10. The force vector 0,i sub

bf f  and 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Sample process to obtain a characteristic mode.  
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displacement vector i
bd  are known at node b after the operation of Eqs. (29a) and (29b). 

Computation of displacement vectors 1 2, ,i i
b b− −d d  from Eq. (29a) follows but the initial force 

vector is given as: 0
i i sub i i

b b b b= + −f f f P d . This is because the force vector from the subsystem 0
subf  

acts on node b in addition to i
bf .  

   An example of a mutual joint is node a in Fig. 10. The force vector i
af  and displacement 

vector i
ad  are obtained by Eq. (29a) and the force vector subf  of Eq. (27b) is known. The force 

vector CEf  is obtained from Eq. (27b). Following that, the subsystem connecting to node a in Fig. 
10 is similarly treated as the subsystem in Fig. 9(b). The displacement vectors 1 2, ,i i

u u− −d d  are 
obtained from Eq. (29b) with respect to , 1,j u u= − . Equation (29a) is still available to nodes 

1, 2,a a− −  in Fig. 10 but the initial force vector is given as: i i CE i i
a a u a a= − −f f f P d . This is 

because the force vector from the CE CE
u− f  acts on node a in addition to i

af .  
   If a self joint illustrated in Fig. 8(a) exists somewhere on the route, the relationship 1

i i
j j+=f f  

is inserted into Eq. (29a) or Eq. (29b).  
   The process described above continues until it arrives at the left side ends of the main system. 
Finally, displacement vector of each node corresponds to a characteristic mode.  
 

4. Numerical Computations 
 
   In order to demonstrate the feasibility of the newly presented algorithm of the TICM, numerical 
computations were implemented. A standard computer (CPU 1.0 GHz, 256 MB RAM) was used. 
The compiler was Fortran 95, and double precision variables were used unless in a special case. An 
ordinary determinant method, which is formulated as the following equation, was also 
implemented.  

 2det( ) 0ω− =K M        (30) 

where M and K are the mass matrix and the stiffness matrix of the whole system. In this paper, we 
call this method Large Matrix Method (hereafter: LMM). The validity of the TICM is estimated by 
a comparison between the TICM and the LMM. We made several devices to accelerate the 
computational speed of the LMM as much as possible. For example, non-zero elements of 

2( )ω−K M  were gathered nearby the diagonal part, and computation of zero-elements was 
eliminated from the routine.  
 
4.1 Analytical model 
   An analytical model is illustrated in Fig. 11. The system consists of n lines of horizontal main 
systems and vertical, slanting subsystems. Every joint in Fig. 11 is modeled as a pin joint, in which  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 Analytical model of an in-plane frame structure.  
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the spring constants of CE are given as , , 0CE CE CE
x yk k K→∞ = . Hence, the analytical model is an 

in-plane truss structure. Simply supports exist at node 0 of the 1st and the n-th main systems. The 
supports are realized by , ,

ˆ ˆ ˆ, , 0i i i
x j y j jk k K→∞ = , ( i = 1, n, j = 0). Simply supports with sliding (vertical 

direction) exist at node r of the 1st and the n-th main systems, which are realized by 
, ,

ˆ ˆ ˆ, , 0i i i
x j y j jk k K→∞ = , ( i = 1, n, j = r). Practical values corresponding to infinity “∞ ” are specified 

later.  
   All the members of the system are solid steel shafts 20 mm in diameter. The length of each 
horizontal and vertical member sectioned by pin joints is 500 mm. The length of each slanting 
member is 500× 2  mm. The horizontal, vertical and slanting members are equally divided into 5, 
5 and 7 pieces, respectively, for the lumped mass modeling. The characteristic values of inertia 
(mass and moment of inertia) are equally separated into the both sides of the divided pieces.  
   The route of the computation to obtain the dynamic influence coefficient matrices T on this 
model is shown as a flowchart in Fig. 12. The maximum dimension of T is only 3(n+1) if the 
computation of T follows the route in Fig. 12.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 Flowchart of a computation of the dynamic influence coefficient matrices.  
 
   The information of the analytical model, for example, length, diameter and slanting angle of the 
member, spring constants, the route of the computation of T, etc., are specified in a parameter file. 
The actual computation of free vibration analysis follows an input process of the information into 
an executive file. If another analytical model is treated, only the parameter file is altered. No other 
executive file is needed for another analytical model. Many types of in-plane frame structures are 
treatable according to the parameter file. We emphasize that the source program of the TICM is 
general-purpose. As for the LMM, the same parameter file is utilized to arrange the mass matrix M 
and the stiffness matrix K.  
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4.2 Computational accuracy 
   We treated an analytical model of n = 4 and r = 35 (Fig. 11). The degrees of freedom of the 
model was given by  

 3( 1)(14 / 5 6) 18 / 5DOFN n r nr= − + +      (31) 

NDOF = 1440 in this case. The frequency equation (28b) of the TICM and Eq. (30) of the LMM were 
solved by the bisection method. Frequency /(2 )f ω π=  (Hz) was used in place of the circular 
frequency ω  (rad/s). The bisection method started from 0.1 Hz with an initial frequency step size 
0.1 Hz. A natural frequency was obtained as f when the plus or minus sign of the frequency 
equation changed between f and f f+Δ , and the frequency step size fΔ  satisfied 10/ 10f f −Δ < .  
   Spring constants ,CE CE

x yk k  and , ,
ˆ ˆ,i i

x j y jk k  ( i = 1, n, j = 0) were modeled as infinite in pin joint 
and simply support, respectively, while ,

ˆi
y jk  ( i = 1, n, j = r) was infinite in the simply support with 

sliding. In a practical computation, finite large value was used as a substitution for infinite. In this 
paper, the LMM with quadruple precision variables was also implemented and spring constants 

20
, ,

ˆ ˆ 10i i
x j y jk k= =  N/m was chosen as a large value. The result of the LMM with quadruple precision 

was regarded as an exact solution of the truss structure. The natural frequency of quadruple 
precision was computed under the condition of 20/ 10f f −Δ <  and the 1st natural frequency, about 
67.3 Hz, was obtained. The spring constants in the TICM and the LMM of double precision were 
represented as 10s N/m, where the parameter s ranged from 10 to 20. The 1st natural frequencies to 
the parameter s were computed by the TICM and the LMM of double precision. The relationship of 
the parameter s and relative errors of the 1st natural frequencies to the exact solution are plotted in 
Fig. 13. The results of the TICM uniformly converged at the exact solution. Since the solution of 
double precision was obtained under the condition of 10/ 10f f −Δ < , the relative errors were almost 
saturated at 1010− . As for the LMM of double precision, the results converge at the exact solution 
while s =10, ... ,15 but suddenly deviate from the exact solution as s becomes larger than 15. It is 
clear that the TICM kept the computational accuracy even if the spring constants became very large, 
but the LMM lost accuracy as the spring constants became large. The loss of accuracy in the LMM 
was caused by numerical instability due to the large values of the spring constants. Although the 
result of the LMM of double precision is possibly used in a practical use, it implicitly involves a 
numerical instability when a spring constant is very large. On the contrary, the TICM is quite free 
from such numerical instability.  
   Typical characteristic modes to the parameter s = 15 are shown in Fig.14. Since the 2nd − 5th  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13 Relative errors of the 1st natural frequencies of analytical model (n = 4, r = 35) with spring constant 
        10s N/m (s = 10, 11, ... ,20) to the exact 1st natural frequency (quadruple precision with spring  
        constant 1020 N/m).  
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Fig. 14 Typical characteristic modes.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15 Computational speed.  
 
natural frequencies are close to each other, the shape of corresponding characteristic modes, in 
which only the slanting members are vibrating, are similar to each other. 
 
4.3 Computational speed 
   The computational times of the TICM and the LMM are compared in this section. An analytical 
model was the same as in Section 4.2. The spring constant of 1010 N/m was selected in order to 
prevent numerical instability in the LMM. CPU times to operate the frequency equation [Eq. (28b) 
for the TICM, Eq. (30) for the LMM] 1000 times were provided for the comparison. The 
relationships between the CPU times and NDOF are plotted in Fig.15, where the CPU times are 
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classified into numbers of the main system n = 2, 3, 4 and 5. The CPU times increase in both 
methods as NDOF increases, but the TICM is wholly faster than the LMM. The computational time 
of the LMM increases at a higher rate than that of the TICM. Since the computational speed of the 
LMM needed to be accelerated to its maximum potential, the TICM has a distinct advantage in 
computation speed, especially in large scale structures.  
   The operation of the LMM was impossible in a range of NDOF > 2700 on the employed computer, 
while the TICM was able to operate without such limitations. The limitation of the LMM is directly 
affected by NDOF because the dimension of the matrix used in the LMM corresponds to NDOF. On 
the contrary, the maximum size of the matrices and vectors in the TICM is only 3(n+1) according 
to the computational route shown in Fig. 12. It is clear that the TICM also has an advantage in 
computational storage.  
 

5. Conclusions 
 
   (1) The algorithm of the Transfer Influence Coefficient Method was extended to an in-plane 
frame structure which includes branches and links to form closed loops. The newly extended 
algorithm enabled the free vibration analysis of truss and rahmen structures.  
   (2) Source program code according to the presented algorithm was able to treat various type of 
in-plane frame structure. No other program code was needed for different analytical models. Only a 
parameter file, which included information of the analytical model, was altered.  
   (3) The feasibility of the presented algorithm was demonstrated through some numerical 
computations. The presented algorithm had advantages in computational accuracy and speed 
compared with that of the ordinary determinant method.  
   Although the algorithm in this study was restricted within an in-plane free vibration of a 
two-dimensional frame structure in order to simplify the description, the algorithm will be easily 
extended to three-dimensional structure. Force vibration, transient response and nonlinear response 
are also treatable. That will be a future work.  
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