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Abstract 
 

For safe and efficient work of handling task for heavy load by overhead 
traveling crane, sway of the suspended load should be avoided. Various methods 
have been proposed to reduce the sway, mostly by using feedback control 
methods. However, most material handling system uses open loop type servo 
controller where trapezoidal or S-shape velocity pattern is typically used for the 
input of the controller. Considering use of such servo controller, this paper 
proposes an anti-sway open loop control method based on natural period of the 
overhead traveling crane system and by using trapezoidal or S-shape velocity 
pattern for the desired input of the controller. Theoretical analysis for the 
conditions of no sway by the trapezoidal and S-shape velocity pattern input is 
presented. This method can be easily applied for an anti-sway control of the 
crane system when typical servo controller is used. The idea is also applied for 
the case of changing rope length of the overhead traveling crane system.  

 
Keywords: Overhead traveling crane, Anti-sway control, natural period, 
Trapezoidal velocity pattern, S-shaped velocity pattern 

 
 

1. Introduction 
Many types of crane mechanisms are widely used for handling heavy load. Especially, 

traveling crane is generally used such as gantry cranes in port yard and overhead traveling cranes in 
manufacturing factories. While handling work by the crane mechanism, the load is easy to swing 
because the load is suspended by single rope. The swing is danger for workers in the workspace of 
the crane and it lowers the efficiency of the handling work, because it takes time to reduce the 
swing for positioning of the load. Thus, lots of studies on anti-sway control have been done by 
many researchers. 

To reduce the sway of the suspended load of gantry crane and overhead traveling crane, many 
linear-feedback control theory based methods have been proposed1)-4). Most of them are 
combination methods of linear control theory and a compensation control, because the crane 
system is essentially a nonlinear system. For example, a control method by linear regulator and 
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compensation input for non-linear part5), a method by multiple optimum regulators’ gains for 
changing rope length6), a combination method of linear feedback and disturbance observer7) are 
proposed.  

To deal with the non-linearity of the crane system directly, some non-linear feedback control 
methods 8)-10) such as input-output linearization method have been proposed. Furthermore, using the 
operator's skill for the crane work, fuzzy or rule base feedback control methods11)-13) are also 
proposed for anti-sway of suspended load. These control methods are state feedback type using the 
state of the load such as swing angle, where some sensor systems to detect the state are needed. 
That becomes a complicated control system.  

On the other hand, trajectory following control by using pre-designed optimum control input 
can be also applied to the anti-sway control problem. For example, control input design by 
maximum principle and typical input pattern of less sway are proposed14)- 17). Combination of 
typical input pattern and linear feedback control are also proposed18)-20).  

In addition to crane mechanisms, many positioning and servo mechanisms use a servo 
controller, where desirable velocity and trajectory are realized by an inner feedback loop inside of 
the controller when suitable desirable control inputs are commanded to the controller. Thus user is 
just requested to input the desirable values for the controller without feedback of state of 
mechanism. When such servo controller is installed as a control system, trapezoidal velocity pattern 
or S-shape velocity pattern are often used as the desirable trajectory of the mechanism. This control 
is basically an open-loop type in the view point of the user when using the servo controller.  

For such case, it has been known by experience that using natural period of the mechanism as 
the acceleration period of trapezoidal velocity pattern leads to low sway of the system. However, 
theoretical background and mathematical condition has not been cleared yet. Thus, considering the 
fact that many servo mechanisms are controlled by trapezoidal velocity pattern or S-shape velocity 
pattern, the paper proposes a design method of no sway control input for overhead traveling crane 
system by the typical velocity pattern. This is a method based on the relation between acceleration 
time of the typical velocity pattern and natural period of the crane system. The paper gives 
theoretical background for the experimental knowledge of the natural period method, and leads to 
general conditions for no sway using various velocity input patterns. This paper also makes clear 
that there is a condition of no sway when S-shape velocity pattern is used. When the rope length is 
changed during traveling of the trolley, this idea of no sway can not be applied directly, because 
natural period is continuously changed for the changing rope's length. However, the paper shows 
that there is no sway if the rope length is changed at constant velocity interval.  

The paper, firstly, presents dynamical model of the over head traveling crane system. Then, no 
sway condition using trapezoidal velocity pattern with and without damping is shown. Furthermore, 
no sway condition using S-shape velocity pattern with and without damping is also shown. The 
case of changing rope length is discussed. Validity of the proposed control design method of no 
sway control input is confirmed by numerical simulations. 

 
 

2. Dynamical Model of Overhead Traveling Crane 
 

This section shows a dynamical model of overhead traveling crane. For simplicity, it is 
assumed that suspended load is point mass, mass of rope is small enough comparing the suspended 
load, the rope does not generate bending moment and the rope does not get longer. Then, the 
equation of motion of load along constrained arc by rope is  

φφ cossin xmmgsm &&&& +−=                                                  (1) 
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where x is trolley position，m is mass of the suspended load, g is gravitational force, φ is swing 
angle of rope and s is the coordinate value along constrained arc by rope (see Fig.1). 

Setting l as rope length which can change for time t, introducing viscous damping term C and 
using s=lφ , Equation (1) leads 

l
x

l
lg

l
lC &&&&
&

&
&& =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+ φφφ 2                                                 (2) 

This is a second order time variant system differential equation. If rope length is not changed, the 
equation becomes 
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where the natural period for the system is   
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Fig. 1 Model of overhead traveling crane. 
 

3.  Trapezoidal Velocity Pattern and Natural Period 
                                                

When using a commercial servo controller, trapezoidal velocity pattern is often used for 
position control of mechanical systems. It has been known by experience that taking same value for 
natural period of the mechanism and the acceleration interval of trapezoidal velocity pattern leads 
to no sway of the system. This section, thus, discusses general relationship between sway of the 
system and design of trapezoidal velocity pattern. In this section, rope length is assumed to be 
constant. The case of changing rope length is treated in the later section. 

 
3.1 Case of no damping 

This subsection discusses the case where the trolley is controlled by trapezoidal velocity 
pattern assuming no damping in the crane system. In actual positioning task by overhead traveling 
crane, the traveling distance L is specified in advance. By the limit of driving system for trolley, 
maximum velocity of the trolley vmax is also specified. Then the traveling distance L and 
acceleration and deceleration interval T1 and constant speed interval T2 hold the following relation 

)( 21max TTvL +=       if 01
max

≥−T
v

L                                      (5) 
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Because L and vmax is specified, T2 is automatically determined when T1 is specified by the 
condition of no sway.  

By assuming no change of rope length, we calculate the response for the trapezoidal velocity 
input in Fig.2 from 0 to T 1. Firstly, rewrite the equation (3) by standard form of second order 
system as 

)(2 2 tunn =++ φωφζωφ &&&                                                   (6) 

whereζ ( 10 ≤≤ ζ ; because the typical crane mechanism has very low damping coefficient) is 

damping coefficient, ω n is natural angular frequency and u(t) is input for the system. By setting 

constant input )0()( 1Ttatu ≤≤= , the response is  
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Fig. 2 Trapezoidal velocity pattern. 

At the point p in the Fig.2, 0=φ and  for no sway at t =T 0=φ& 1, thus 

( 0cos1 12 =−= Ta
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n

ω
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This condition leads to 

πω nTn 21 =   L,2,1=n                                                   (11) 

Using the natural period of the system T n（Equation (4)），the condition is rewritten by  

n
n

nTnT ==
ω

π2
1

                                                 (12) L,2,1=n

This condition means that taking same value for the acceleration interval and n times of 

natural period leads to no sway of the crane system at point p in Fig.2. The interval of is 

completely symmetrical with the interval of

endttt ≤≤2

10 tt ≤≤ . Thus there is no sway at  if the endtt =
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Equation (12) is satisfied. Furthermore, there is no sway during constant speed section , 

because zero input for the Equation (6) and . Note that same n for acceleration 

interval and deceleration interval is not necessary. For example acceleration interval  is 

2T

21 ttt ≤≤

0)(,0)( 11 == tt φφ &

10 tt ≤≤

n and deceleration interval  is 3Tendttt ≤≤2 n  will also be no sway at point p, q, r in Fig.2. 

 
3.2 Case of with damping 

 When there is damping effect in dynamical equation (6), the condition of no sway changes. 
This subsection derives the condition. We first rewrite the Equation (7) using the initial condition 
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From equation (14) and (15), 
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This is a condition of no sway on T1, however, it is not clear that there is a solution of T 1 or not for 
the nonlinear equation (16).  
 
3.3 Case of without constant speed interval 

This subsection discusses the case of 01
max

<−T
v

L . For such case, constant speed interval in 

Fig.2 is disappeared, and maximum speed of the trolley does not reach to specified vmax and holds  
2

1aTL =                                                            (17) 

When the T1 is specified for the condition of no sway, the constant acceleration a is automatically 
determined，because L is specified.  

The response for the interval 10 tt ≤≤  is as same as the one in section 3.2 and 3.3, because of 

same terminal conditions and same constant input a. Thus the condition of no sway for the case of 
without damping is  
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And for the case of with damping, no sway condition is the Equation (16). 
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Fig. 3 Trapezoidal velocity pattern without constant speed interval. 

 
4.  S-Shape Velocity Pattern and Natural Period 

 
When trapezoidal velocity pattern is used for a positioning control of mechanical systems, 

undesirable vibration may be excited for the system because of discontinuity for input acceleration 
at switching points (point p and q in Fig.2). Therefore, smoother curve is desirable for the velocity 
patter. The S-shape velocity pattern is often used as a desirable input for servo controller for such 
reason. Where the velocity is second order polynomial function on time t, which is shown in Fig.4. 
This section discusses a no sway condition using the S-shape velocity pattern. 
 
4.1 Case of no dumping 

When the velocity pattern is given in Fig.4, the relationship between traveling distance of 
trolley L and acceleration and deceleration interval T1 and constant speed interval T2 is  

          if )2( 21max TTvL += 02 1
max

≥− T
v

L                                  (19)                    

Where L and vmax is specified in actual positioning problem, thus constant speed interval T2 is 
automatically determined if the interval of T1 is given by the following no sway condition. The 
slope a of input u(t) in Fig.4 is given by  

2
1
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T
va =                                                               (20) 

Thus, for given vmax,  the slope a is automatically determined by calculating T1 by the following no 
sway condition. 

 For the dynamical system equation (6), response of sway angle φ(t) for the S-shape velocity 
pattern is expressed by the form of 
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2

2
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where  are constants determined by initial condition and input. Assuming no dumping, 

the response with zero initial condition, the sway angle and velocity of sway angle for the interval 

 are 

BACC ,,, 21

10 Tt ≤≤



  Anti-sway Control Input for Overhead Traveling Crane Based on Natural Period 227

23 sin)(
n

n
n

attat
ω

ω
ω

φ +−=                                                (22) 

22 cos)(
n

n
n

atat
ω

ω
ω

φ +−=&                                               (23)       

Using terminal condition in the Equations (22), (23), for the interval 11 2TtT ≤≤ , 

232
1 sincos2)(

n
n

n
n

n

attataTt
ω

ω
ω

ω
ω

φ −+=                                   (24) 

22
1 cossin2)(

n
n

n
n

n

atataTt
ω

ω
ω

ω
ω

φ −+−=&                  (25) 

 

t

x
vmax

0

p q

r

tend

0

x

T1 T2

tat

tendT1

T1 T1

T1 T1 T2 T1 T1

-at+2aT1

 
 

Fig. 4 S-shape velocity pattern. 
 

No sway condition at time  is given by the Equations (24), (25) as;  12Tt =
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Therefore the condition of no sway at p, q, r in Fig.4 with S-shape velocity pattern is  
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4.2 Case of with dumping 
The condition of no sway for the case of considering dumping is discussed. Based on the 

dynamics equation (6), sway angle φ (t) is described using the S-shape velocity input in Fig.4 as, 
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The sway angle response for the interval 0≤t≤T1 is 
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For the interval T1≤t≤2T1, φ (t) is given by equation (29) where 
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)(tφ&  (T1≤t≤2T1 ) is given by equation (29) where 
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Then no sway condition is obtained by setting t =2T 1 and by setting 0)( =tφ ,  for the 

above equations. However, the relation is too complicated to get closed form condition for T

0)( =tφ&

1. It is 
not clear that there is a condition of no sway for the dumping case or not. 
 
4.3 Case of no constant speed interval 

When 02 1
max

<− T
v

L , the constant speed interval is disappeared as in Fig.5. Then the 

relationship between the traveling distance of trolley L and T1 in Fig.5 is  
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2
12aTL =                                                              (38) 

The interval of T1 is given by the following no sway condition, thus the parameter a is determined 
by the above equation. Then the condition of no sway for T1 is same as the Equation (28) for no 
dumping case, and same as the Equations (29), (32)-(37) for dumping case, because of the same 

condition for  in section 4.1. 120 Tt <≤
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Fig. 5 S-shape velocity pattern without constant speed interval. 

 
 

5. Numerical Simulation 
 

To confirm a validity of the proposed control input design method for overhead traveling 
crane for anti-sway control, numerical simulations are presented in this section. In the following 
simulation, the traveling distance for trolley is L=50[m], mass of the suspended load m=2370[Kg], 
initial rope length l0 =15[m], maximum velocity of trolley vmax=6.0[m/sec] for trapezoidal velocity 
pattern and vmax=9.0[m/sec] for S-shape velocity pattern. The natural period Tn =1.2617[sec] for 
initial rope length.  

 First simulation example is the case of using trapezoidal velocity pattern as the input of crane 
system. Figure (T-1) in Fig.6 is a trapezoidal velocity input with setting the acceleration and 
deceleration interval T1 as same value as natural period Tn . Then the response of sway ((T-2) in 

Fig.6) is zero at terminal time. The zero sway is also achieved by setting nTT 21 =  as shown in 

(T-3) and (T-4) in the figures. However, it is found that setting 0.21 =T [sec] which is different 

from n times of natural period ((T-5) and ((T-6) in Fig.6) results in residual sway.  
 Second simulation is the case of using S-shape velocity pattern as the input of crane system. 

Figure (S-1) and (S-3) in Fig.7 is the case of proposed velocity input design by S-shape velocity 
pattern. The figure of (S-5) is not considered on the natural period when determining acceleration 
and deceleration interval T1. As shown in (S-2), (S-4) and (S-6) in Fig.7, proposed input design 
method results in no sway at terminal also for the case of S-shape velocity pattern.  

 Third simulation is the case of changing rope length in Fig. 8. In the figure (SR-1), rope 
length trajectory is given by l(t). Because changing rope length is only in the interval of constant 
velocity which means zero input, there is no residual sway for this case.  

Figures (SC-1), (SC-2), (SC-3) and (SC-4) show the case of considering dumping coefficient 
C in the Equation (3) where the rope length is fixed with initial value l0. By setting C=0.2 with 
trapezoidal velocity pattern and setting T1=Tn, it is found that a little sway at constant velocity 
interval and terminal time. This is caused by change of natural period and different phase angle in 
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Equation (14), (15) from the case of no dumping for sway angle and velocity of sway angle.  
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Fig. 6 Trapezoidal velocity pattern by proposed input design method and its response. 
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Fig. 7 S-shape velocity pattern by proposed input design method and its response. 
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Fig. 8 Case of changing rope length. 

 

 
 
Fig. 9 Case of considering dumping. 

 
However the case of small dumping coefficient C=0.01 which is more practical for typical crane 
system, little residual sway is found.  
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6. Conclusion 
 

A control input design for anti-sway of overhead traveling crane based on natural period has 
been proposed. The paper has discussed the relationship between sway of the suspended load and 
the natural period of the crane system. We propose an input design method where the acceleration 
and deceleration interval is set with n times of natural period of the crane system when trapezoidal 
or S- shape velocity input is used. It is also presented that the method can be applied for changing 
rope length during the motion of trolley if the change of rope is controlled during constant velocity 
interval both for trapezoidal and S-shape velocity input. Numerical examples show a validity of the 
proposed anti-sway method. 
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