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Abstract 
 

   The neutrino structure has been studied with three major assumptions for 

constituent particles: (1) Weak charge is capable of working as a weak dipole 

moment and the electromagnetic self-energy in the Fermi gauge produces the 

neutrino mass, (2) motions of neutrino constituent particles are governed in two 

separate ways by extended Dirac and extended Klein-Gordon equations, and (3) 

the neutrino system has implicit internal subspaces that give constraints on 

kinetic motions and potential interactions. So-called vector and axial-vector 

movements play a role of time and spatial motions, respectively, and generate 

the individual potential propagations at the same time. The exchange relation for 

operators of constituent motions explains the creation of half-integer spin as 

well as a periodical vibration motion. 
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1. Introduction 
 

Neutrinos and electrons commonly exist in nature and are classified into the same group of 

lepton1). Neutrinos have a half-integer spin in the restricted direction. They are treated to make the 

weak interaction of vector(V) and axial-vector(AV) types2), and supposed to own a quite small 

mass3). Quantum mechanics allots quantized integer angular momentums to particle orbital motions. 

The half-integer spin seems to come from a sophisticated internal motion of constituent particles. 

Electroweak theory4,5) unified the electromagnetic and weak interaction, and explained the mass of 

field bosons. However, such theory was not applied to the neutrino structure, and the neutrino 

structure and mass generation were not made clear. It is interesting to consider that a neutrino is 
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composed of constituent particles, and they have V- and AV-type motions with some special 

degrees of freedom, which has not been established so far. In this study, we attempt to explain the 

origin of the small neutrino mass as well as the half-integer spin in the restricted direction. 

For covariant treatment of electromagnetic field, Fermi (Feynman) gauge6) is established by the 

use of auxiliary field7) ˆ B 0. The auxiliary field may take an essential role in producing the neutrino 

mass.  The auxiliary field will be coupled with neutrino constituent motions with bold 

assumptions. A discussion will be presented on an external auxiliary field. Existence of the external 

auxiliary field may make a neutrino to be dissociated. This reaction may be useful for engineering 

purposes of making use of the weak interaction energy in future.  

The internal motion of constituents in neutrino system is proposed by making several 

assumptions. (1) Interaction potentials are generated by weak charge and weak dipole moment in 

the Fermi gauge, (2) motions of neutrino constituent particles are basically governed by an Dirac 

and Klein-Gordon equations2) in an extended manner, and (3) the neutrino system has internal 

subspaces for kinetic motions which are different from the conventional space. At first, the internal 

motions are considered to be governed by both V- and AV-potentials, and then the potential matrix 

types are revised to produce the neutrino mass through the potential interaction. 

 

2. Weak-Electric Dipole Moment as Original Potential Source 

 

In the conventional treatment for particles like atoms, the electromagnetic interaction is caused 

by the electric charge e that serves as a potential source. The electromagnetic system possesses 

the spin with up- and down-degrees of freedom in orientation. When such a potential source is 

simply replaced by a weak-electric charge Q, it is supposed to be impossible to explain the 

experimental fact that neutrino has the restricted spin orientation.  

We postulate that the weak-electric charge Q  has the feature of working as a 

weak-electric-dipole moment Qd , so that this moment may play an important role in the potential 

interaction as a counterpart of the charge. The dipole moment Qd  is assumed to have a 

relationship with the weak-electric charge Q through a specified length. It is natural for the 

Compton wavelength   h / mc to serve as this length:   Q = Qdmc / h  where m is the mass of 

neutrino. The weak-electric dipole moment Qd  works as a magnetic moment µ0vQd  for a 

particle moving with velocity v . Thereafter, Q and Qd  are called briefly the electric charge 

and the dipole moment, respectively. The weak-electric and weak-magnetic fields are also simply 

designated as the electric and the magnetic ones, respectively. 

The basic interaction between Q and Qd  is supposed to take place as illustrated in Fig. 1, 

where two particles having Q and Qd  are moving in the z-direction with a left-rotated spiral 

motion. The velocity vz of Qd  generates the magnetic field of dipole type B(vzQd )  as shown 

in the upper side by dashed curves. This magnetic field is expected to be compensated by the field 

B(vφQ) , which is drawn in the lower side by solid curves being created by the rotational velocity 

vφ  of Q. Meanwhile, the circular magnetic field B(vφQd )  is produced by the velocity vφ  of 

the dipole momentQd , and is cancelled by that in the reversed direction B(vzQ)  formed by vz 
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of the charge Q. Thus, both the magnetic fields generated by Qd  and Q have individually the 

opposite directions in principle. The two particles interact with each other to have the reduced 

magnetic-field energy, so that they may be in an either stable or equilibrium state. 

Figure 1 is based on the left-rotated motions, and the velocities of straight motions are in the 

same direction. This situation is expected to be suited for the basic internal motion of constituent 

particles. However, the sum of angular momentums gets higher in this case. We need some 

mechanism for reducing the total angular momentum: A mass-polarity configuration will be 

introduced later, which includes particles of negative mass states. 

 
⇔⇔ ⇔⇔

Q vz

vφ

Q d
vz

vφ

B(vzQ d)

B(vφQ d)

B(vzQ )

B(vφQ )

 

Motion        Magnetic field 

Fig. 1 Magnetic field generated by particles with electric charge Q  and dipole 

moment Qd . The two particles are traveling in the z-direction with a left-rotated spiral 

motion. 

 

 

3. Reduced Mass, Extended Dirac Equation and Related Definitions 

 

In this study, covariant quantities2) are expressed by variables with use of the imaginary unit i . 

Variables with subscript indicate actual real values. Covariant properties are expressed by 

superscripted variables, which include the imaginary unit i  in some cases.  

The Dirac equation utilizes four gamma matrices of γν  with v =0~3.6) A neutrino is assumed 

to consist of four types of constituent particles, according to the number of the basic gamma 

matrices. It is postulated, at first, that the constituent particles exist in either real or imaginary mass 

states. The mass of internal particle in the imaginary mass state is expressed by imν
int  in terms of a 

real value mν
int . Accordingly, the square of imaginary mass is expressed by (imν

int )2 = sν
m(mν

int )2 

with sν
m = −1, while that of real mass by (mν

int )2 = sν
m(mν

int )2  with sν
m = +1. The total mass 

ms of neutrino is taken to be positive, and is written by (ms)
2 = ss

m ms

2
 with ss

m = +1. The 

total mass ms is defined by motions with internal masses as 
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where the velocity µ
νx&  of constituent particle ν  is defined classically as ( )icdd // τ  by the 

real value of intrinsic time τ  of the system. Eq. (1) gives a classical momentum of 
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The bracket in the left-hand side in eq. (2) contains no imaginary value: Adoption of a reduced 

mass of s
int mm /)( 2
ν  with the polarity msν  enables us to use the real quantity of equivalent 

mass for the momentum. It is useful to reconstruct eq. (1) in a linear form, taking the equivalent 

mass into account. The assumption of the relativistic relationship of  1)( 2 =Σ µ
νx&  changes the 

square of eq. (1) into 
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where mν  becomes positive. Division of this equation by ms  gives 
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3~0
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Thus, the original real and imaginary properties of constituent masses are written by the linear sum 

of real-value mν  with sν
m = ±1: The form of the linear summation allows us to treat the original 

internal motions as the external movements in terms of the reduced mass mν . Thereafter, we take 

this view and simply call sν
mmν  positive or negative mass states, which may be suited to the 

treatment by the Dirac equation. 

We use the definition of gamma matrices2) as 

γ0 =
σ 0 0

0 −σ 0

 

 
 

 

 
 , γ k =

0 −σ k

σ k 0

 

 
 

 

 
 , γ5 =

0 iσ 0

iσ 0 0

 

 
 

 

 
 , k =1,2,3 , (4) 

where the Pauli’s spin matrices are 

σ1 =
0 1

1 0

 
 
  

 
 , σ2 =

0 −i

i 0

 
 
  

 
 , σ3 =

1 0

0 −1

 
 
  

 
 . 

The unit matrix 1 is given by 
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σ 0 0

0 σ 0

 

 
 

 

 
   with σ 0 =

1 0

0 1

 

 
 

 

 
 . 

The following Dirac-based equation with inclusion of AV-momentum is one of candidates for 

expressing the motion of constituent particleν : 

γµ pµ,νV + γ5γµ pµ,νA( )
µ= 0~3

∑
 
 
 

  

 
 
 

  
ψν = mνψν , (5) 

where pµ,νV  and pµ,νA  stand for V- and AV-momentums. The V-type 4-momentum pµ,νV  

possesses the matrix property of γµ , and accordingly xµ,νV  has γµ . We, at first, treat as if the 

neutrino constituent mass νm  has the matrix of time component, i.e. γ0. Multiplication of eq. (5) 

by γ0 leads to 

γ0γµ pµ,νV + γ0γ5γµ pµ,νA( )
µ= 0~3

∑
 
 
 

  

 
 
 

  
ψν = γ0γ0mνψν = mνψν , (6) 

The view of eq. (6) assigns the unit matrix 1 to the time variables through γ0γ0p0,νV = p0,νV  and 

γ0γ0x0,νV = x0,νV . The unit matrix offers a flexible function as equivalent time component, as 

explained in section 5.  In spite of addition of γ0 , we still call pµ,νV  and pµ,νA  V- and 

AV-momentums in this study. 

Defining superscripted values of 

γ µ = γµ  for µ = 0 ~ 3, and γ 5 = γ5 / i  

makes γ 0γ µ  and γ 0γ 5γ µ  the Hermite matrix, and gives 

γ 0γ µ( )2
=1, γ 0γ 5γ µ( )2

=1 . 

The relation  

µ
ν

µ
νµµ

µ
ν

µ
νµµ γγγγγγγγγγ AAVV pipipp 50

,50
0

,0 )/(, ==  

suggests us to take 

pνV
µ = pµ,νV ,  pνA

µ = ipµ,νA  

for µ =0~3. Properties of variables are summarized in Table 1. It is noted that both the position 

variables xνV
µ  and xνA

µ  for the V- and AV-motions have the same matrix of γ 0γ µ  with V-type, 

differing those of momentum and potentials. This is required for the AV-field such as BνA
k  to 

possess γ 5 to retain AV-properties. The time components of V- and AV-potentials have reversed 

complex type. This comes from the derivation of the potentials as explained in section 5. 

The motion of many-body system is usually described in the cm frame. We, therefore, consider 

that particle ν  with Qd  in eq. (6) make their motion on a reference position. This reference 

position is supplied by the motion of a basic particle, which is designated as b. The situation of Fig. 

1 is suitable to this view, when particle ν  with Qd  resides on the motion of particle b with 
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charge Q. However, this situation produces a large angular momentum of the system. It is 

expected for sum of angular momentums to be reduced by introduction of flexible common 

positions, which may have the property coming from a nature of boson as described bellow.  

 

 

Table 1 Super- and sub-scripted variables and matrix properties. The quantity ˆ B 0 

stands for auxiliary field, which will be explained in section 5. For potential treatment, 

time coordinate 
0x stands for that for potential propagation 

fdx0
as described in 

section 5. 
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pνA
0

pνA
k

 

 
 

 

 
 =

ip0,νA

ipk,νA

 

 
 

 

 
 , γ 0γ 5γ µ  

 

AνV
0

AνV
k

 

 
 

 

 
 =

iA0,νV

Ak,νV

 

 
 

 

 
 , γ 0γ µ  

ˆ B 0 = −Σ∂Aµ / ∂xµ ,  1 

 

AνA
0

AνA
k

 

 
 

 

 
 =

A0,νA

iAk,νA

 

 
 

 

 
 , γ 0γ 5γ µ  

ˆ B 0 = −Σ∂Aµ / ∂xµ , − γ 5 

 
 

The velocities of particle b should satisfy the relation as 1)( 2 =Σ µ
bx&  as inferred form eq. (1). 

For example, the V-velocity has the matrix property as 

{ } ( ) { } ( ) ,,,,,,, 3020100003210 tt

bVbVbVbVbV xxxxx γγγγγγγγγγ µµ =⇔= &&&&&  (7) 

where {  } indicates a representation of vector. We assume the relationship between the velocity 

and the matrix is not always fixed and it can be changed with holding 1)( 2 =Σ µ
bx& . This feature 

may be admitted for boson, where matrices always work as a squared form as in the Klein-Gordon 

equation. Then, the matrix property is considered possible to be the transformed by means of a 

transformation matrix Uν  as 

γ 0γ µ '{ }= Uν γ 0γ µ{ }, 

where the unitary property is set as Uν
tUν =1. Simple candidates for the transformation matrix 

are 

Uν =
γν for ν = 0,1, 3

γν / i for ν = 2

 
 
 

. 
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Conversion of position and momentum by matrices Uν  of ν = 0, 2 makes the z-component of 

angular momentum inverted, and that by U3 changes it to zero in a classical consideration. In 

contrast, transformation by matrix U1 holds the value of the angular momentum in the z-direction. 

Unlike matrices Uν  of ν = 0,2, 3, U1 may be unsuited for the transformation matrix. Then, 

we treat particle 1 to own electric charge   Qb = Qdmbc / h , and to serve as the boson in the 

conventional space to produce the basic common motion. Quantities related to particle 1 itself are 

often specified by the use of 1b thereafter. In contrast, other particles ν = 0,2, 3 possess the 

dipole moment Qd . When the matrix-property vector {γ 0γ µ '}  is rearranged into the standard 

order of eq. (7), the position vector is expressed in U ν  by  

′ x bV
µ '{ }

Uν = Uν
t xbV

µ{ }
U c

  or  ′ x bV
µ' = uν

t,µ'µ xbV
µ = uν

µµ'xbV
µ , (8) 

where the variable x in U c  is denoted by ′ x  in U ν  after transformation, and the matrix 

element uν
µµ'  is either +1 or –1. The unitary property of Uν

tUν =1 keeps the relation of  
2'2 )()( µµ

bVbV xx && Σ=Σ  after the transformation. We regard the status of { xbV
µ }  as the motion in 

conventional space U c  and { ′ x bV
µ }  as that in subspace U ν . The common motion is also set for 

AV-movement in the same way as for V-type. 

The situation of transformation is illustrated in Fig. 2, where the drawing is made, for example, 

forν = 0. The particle 1b goes in the z-direction with right-rotated motion as seen by dashed 

lines in (a). The dashed lines in (b) show the motion of particle 1b transferred by matrix U0, while 

the solid ones indicate the movement of particle ν = 0 relative to the dashed ones. The situation 

in (b) is viewed in U c  as (c). The angular momentums in (a) and (b) are summed into a large 

value. Reducing the summed value requires a different mechanism. This is accomplished by 

existence of both internal negative-mass state and AV-motion, as explained in later sections. The 

potential propagation takes place through massless photons. We assume that the photons fly in the 

same space of U c  without receiving the conversion Uν  that is defined for neutrino constituents. 

Then, the potential interaction is postulated to take place in U c : (b) is transformed into (c) and 

interacts with (a) to be consistent with Fig. 1.  
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(a) Particle b in Uc

(b) Combined in Uν

(c) Viewed in Uc

Potential 
interaction

Anglular 
motion

UνUν  

Fig. 2  Example of basic and relative motions for ν = 0. Inset (a) indicates the 

common motion of particle 1b, and other dashed lines in (b) and (c) express the 

movement that is originated by the common motion. (b) stands for the sum of 

converted-common motion and relative movement of particle ν = 0.  (c) shows the 

motion transform from (b) by matrix Uν . Potential interaction is made between (a) 

and (c), whereas the particle momentums as well as angular momentums are summed in 

(a) and (b). 

 

 

4. Mass Terms of Individual Particles on the Potential-Free Condition 

 

For derivation of individual masses, potentials are dropped in this section. At first, the mass 

terms are obtained in U ν , but they are finally expressed by the use of variables in U c . Particles 

ν =0, 2 and 3 have positions '''' µµµ
ν

µ
ν

µ
ν bVaVV xuxx += for the V-motion in U ν , where The 

quantities in U ν  are denoted by attaching dash in such a way as ′ x νV
µ . The particle positions are 

treated to override on that of particle 1b with having the same mass polarity. The classical 

momentum for the V- and AV-motion is written by 

( ) .or  ,''' '''' AVXquqxuxmxm bXaXbXaXX =+=+= µµµ
ν

µ
ν

µµµ
ν

µ
νν

µ
νν &&&  

Only for the AV potential-interaction of particle ν , internal mass phases of ππζν or   2/=bA  

will be introduced for the velocity of '' µµµ
ν bAxu &  in section 5, to facilitate either mass formation for 

particles 0 and 3 or a flexible Q-type potential interaction for particle 2. However, they are not 

considered here, since potential interaction is not treated at present. 

The equation for particles ν =0, 2 and 3 is thus written by the Dirac-like equation as 

( )( ) ( )( ) ,in'''''
3~0

''50

3~0

''0 ν
ννν

µ

µµµ
ν

µ
ν

µ

µ

µµµ
ν

µ
ν

µ ψλψγγγγγ Uquqquq bAaAbVaV =







+++ ∑∑

==
 (9) 

( ) .'/ int2int
ννννν λ== s

mm mmsms
 

The linear equation is based on the calculation with 4 × 4  matrices, and solved as the 
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eigen-value problem on the matrices. Use of the definition of gamma matrices in eq. (4) reduces the 

equation to 2× 2 representation as 

X11 X21

X21 X11

 

 
 

 

 
 

αν

βν

 

 
 

 

 
 = ′ λ ν

αν

βν

 

 
 

 

 
 , 

where 

X11 = ′ f νV
0σ 0 + ′ f νA

kσ k

k=1~3

∑ , X21 = − ′ f νA
0σ 0 − ′ f νV

kσ k

k=1~3

∑ , 

,'','' '''' µµµ
ν

µ
ν

µ
ν

µµµ
ν

µ
ν

µ
ν bAaAAbVaVV quqfquqf +=+=  (10) 

The eigen values ′ λ ν ±  is expressed by introduction of a parameter h = ±1 as 

′ λ νh = X11 + hX21 = ′ f νV
0 − h ′ f νA

0( )σ 0 + ′ f νA
k − h ′ f νV

k( )σ k

k=1~3

∑ , (11) 

and its squared one as 

′ λ νh( )2 = ′ f νV
0 − h ′ f νA

0( )2
+ ′ f νA

k − h ′ f νV
k( )2

k=1~3

∑ + 2 ′ f νV
0 − h ′ f νA

0( ) ′ f νA
k − h ′ f νV

k( )σ k

k=1~3

∑ . (12) 

The eigen value ′ λ νh  is accompanied by a 4-compoment eigen vector as 

αν

βν

 

 
 

 

 
 

h= +

= Nh

−X11 + ′ λ νh

X21

 

 
 

 

 
 ,

αν

βν

 

 
 

 

 
 

h=−

= Nh

X21

−X11 + ′ λ νh

 

 
 

 

 
 , 

where Nh  is a normalization factor. Substitution of eq. (11) into the above leads to the form of 

αν

βν

 

 
 

 

 
 

h= +

= NX21

1

1

 

 
 
 

 
 ,

αν

βν

 

 
 

 

 
 

h=−

= NX21

1

−1

 

 
 

 

 
 . (13) 

The states ofh = ±1 are related to the eigen vectors on angular momentum in Section 6, where 

1−=h  is chosen. In accordance with the angular momentum case, 1−=h  is adopted in eq. 

(13).  

The squared mass in eq. (12) is assumed to have the unit matrix type. This gives a boundary 

condition of 

 ( ) ( ) ,0'''' 000000 =+−+=− νννν κκ
νν

κκ
νννν bAaAbVaVAV quqhquqhff  (14) 

where κν = 0,3,2 for particles ν = 0,2,3, respectively, due to the definition of Uν . One can 

see that the complex-type of νν κκ
νν bVaV quq 00' +  mismatches with that of νν κκ

νν bAaA quq 00' + . The AV 

momentum of ( ) ( )ννννννν κ
ν

κ
ν

κ
ν

κ
ν

κ
ν

κ
ν

κ
ν bVaVbAaAA

rev
A qquhqququq +=+== 00000, '''  is treated as the reversed 

complex type. This complex type is also applied to the potential interaction. However, it is assumed 

that the following squared-form with normal AV complex type is admitted to be usable for the 

kinetic momentum in wave function: 

 ( ) ( ) .0''
200200 =+++ νννν κ

ν
κ
ν

κ
ν

κ
ν bVaVbAaA qquqqu   (15) 
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The formulation was made in U ν  in the above. However, the derivation in U c  should give 

the same mass, although the motion direction may change into different one in U c . The definition 

corresponding to eq. (10) in U ν  is written in U c  as 

,',' '''' µµ
ν

µµ
ν

µ
ν

µµ
ν

µµ
ν

µ
ν bAaAAbVaVV qqufqquf +=+=  (16) 

The momentum in the time direction should also disappear in U c , in the same way as in eq. (14) 

in U ν : 

( ) ( ) 0'' 000000 =+−+=− bAaAbVaVAV qquhqquhff νννν κ
ν

κ
ν

κ
ν

κ
ννν .  (17) 

We admit that the V-type momentum ( )0000,0 '' bAaAbVaV
rev

bV qquhqquq +=+= νννν κ
ν

κ
ν

κ
ν

κ
ν  works as 

revered complex type, including potential interaction. For kinetic momentum for wave function, 

similarly,   

( ) ( ) 0''
200200 =+++ bAaAbVaV quqquq νννν κ

ν
κ
ν

κ
ν

κ
ν  (18) 

is assumed to hold good with V-type normal momentum. Since the Dirac-like equation gives only 

the first order relation, there may be uncertainty in the treatment of squared value. Satisfaction of 

eqs. (14) and (18) produces  
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2''2''
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and that of (17) and (15) leads to 
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The momentums in the κν  direction, thus, disappear in eqs. (19) and (20). In these equations, no 

explicit terms are retained on the motions in the time direction. The quantities in eqs. (19) and (20) 

have either plus or minus value, and are called positive and negative mass states. The positive state 

is defined when the direction of physical velocity is identical to that of momentum, and the 

negative state vise versa. One can see that the Dirac-like equation produces the mass with real 

value, corresponding to the linearized situation of eq. (3). 

The complex property allocation of ′ q νV
k = ′ q k,νV  and ′ q νA

k = i ′ q k,νA  suggests that whole the 

V-motion should serve as the time for the AV-one: the V-motion takes a role of time-movement for 

the AV-one on the basis of the complex type. When ′ λ ν ± ≈ 0, the kinetic energies of V- and 

AV-motions give the magnitude of 1: 1. 

Thereafter, we take the view in U c  that particle ν  follows the Dirac-like equation in U c  

as 

( )( ) ( )( ) ,
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0
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with constraints of eqs. (15) and (18). 

As stated in the description on Fig. 2, the neutrino system is expected to include both positive 

and negative mass states. We consider that particle 1b has the flexible feature and is regarded as the 

boson type. The particle is treated to follow the Klein-Gordon-type equation with the V- and 

AV-motions. We consider that the particle is composed of two motions with internal positive- and 

negative-mass polarity sb
π = ±1, for ease of reduction of total angular momentum.  The equation 

for particle 1b may be written by the extension of Klein-Gordon one in U c  as 

( ) ( ) ( ) ( ) ( ) ,1
2

11
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2

1

250
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2
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
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±= ==
 

where sb
π = + = +1 and sb

π =− = −1. In accordance with the complex type in eqs. (14) and (17), we 

set the reversed complex-type as rev
bVq ,0

1 π  and rev
bAq ,3

1 π for potential interaction. As indicated later, the 

reversed complex-type momentum makes much milder contribution to the constituent motion than 

normal-type one. The reversed complex-type motion is expected to have a minimum degree of 

freedom. For normal momentum for wave function, therefore, we additionally assume the 

constraint between ±=π  as 

( ) ( ) ( ) ( ) ,or  ,,
23

1

23
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20
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20
1 AVXqqqq bXbXbXbX === −+−+

 (23) 
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bV qqqq ==  

 Use of (γ 0γ k)2 =1 and (γ 0γ 5γ k)2 =1 leads to 

( ) ( ) ,
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1
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±= ==
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µ
π
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 (24) 

with constraints of eq. (23). The value b1λ  is taken to be positive for the neutrino system. The 

mass terms of eqs. (22) and (24) constitute Lagrangian and subsequently Hamiltonian, by the use of 

potential interaction terms described in the next section. 

 

5. Potential Generation and Propagation 

 

We consider that the V- and AV-potentials propagate through the flight of V- and AV-photons. 

The potentials are considered to travel in U c : All positions and velocities (or momentums) are 

expressed in U c  for the potential generation and propagation. Suppose that two particles ρ  and 

σ  exist at the same intrinsic time τ , where ρ  takes a particle type in 2,0,1,1 −+ bb or 3, and 

σ  also stands for one in those. When the potential propagates from the particle σ  at position 

( )µ
σ

µ
σ AV xx ,  to that of ρ  at ( )µ

ρ
µ
ρ AV xx , , the square of the difference of positions is written at the 

same τ  by  

( ) ( ) ( ) ( ) ,
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2200
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==

−+−+−+−
k

k
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k
AAA

k

k
V

k
VVV xxxxxxxx σρσρσρσρ  

where positions are denoted in a summed form as inferred from Eq. (22) in U c . By the use of 
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either retarded or advanced time εττ +=' , potentials arrive at the position xρ  at τ  under the 

condition of 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) .0''''
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22002200
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Introduction of a spatial distance Xd and a time one fd
Xx0  with use of AVX or  =  changes 

the equation into  

( ) ,' 02 fd
XXXX xd c =−≡ σρ xx

 (25) 

where 

( ) ( ) ( )
.

for    

for    

,''' 22002000





=
=

=

−−−−−−≡

AXV

VXA
X

xxxxx

c

XXAAVV
fd

X cc σρσρσρ xx
 

The time distance fd
Xx0  is defined in incremental form as 

( ) ( ) ( ) ( )[ ].''' 000000100
ccc XXXAAAVVVX

fd
X xxxxxxdx ρσρρσρρσρ xxx ∂•−+∂−+∂−−=∂ −

 (26) 

We follow the matrix-type definition in Table 1. For example, momentum µ
νXp , where 

X = V or A, owns the matrix property of µγγ 0  for the V-type and µγγγ 50  for AV-type. We 

assume that the weak charge of neutrino equals the charge e of electromagnetic interaction, and 

adopt the dipole moment td meQ /h=  of neutrino and the charge h/νν mQQ d=   

tmem /ν= of particle ν .  In this study, the polarities of dQ  and νQ  are always taken to be 

fixed, and their variation in function is considered by means of apparent velocity ν
µ

ν
µ

νβ mp XX /= , 

where 0>νm . The apparent velocity contains the mass information such as bAimes νζ
ν . The 

moment and charge have the unit matrix. The matrix type of µ
XA  to be generated is treated as 

either µγγ 0  or µγγγ 50  in accordance with the matrix property of velocity. 

The Lagrangian density ̃  L X  is constructed at a certain intrinsic time τ . The density ˜ L X  is 

considered to have basically the same form for X=V and A. There is a difference in potential 

treatment between sources of Qd  and Qb. Nevertheless, the basic part of the Lagrangian density 
˜ L basX is common for potential sources of Qd  and Qb: 

˜ L basX = 1
2µ0

EX
k

c

EX
k

ck=1~3

∑ + BX
k BX

k

k=1−3

∑ − ˆ B X
0 ˆ B X

0
 

 
 

 

 
 −

1
µ0

ˆ B X
0 ∂AX

µ

∂xνX
µ

µ= 0~3

∑ , 

where simple subscripts are utilized here: µνXx∂  indicates k
Xxν∂  and ∂xνX

0  corresponds to  
fd

Xx0
ν∂ in the above. We adopted the Fermi gauge for introduction of the auxiliary field ˆ B 0 in the 

above Lagrangian density. The auxiliary field ̂ B 0  acquires the meaning of the 

electric/magnetic-like field in the time direction. The potential generated by dipole moment Qd  is 
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described by the Lagrangian density as 
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βρβρ

&&&

&

&&
 (27) 

where Xνρ  stands for the spatial particle density. The symbolic expression of velocity is written 

as 

,/ k
X

mk
X

mk
V xscmqs ννννννβ &==  

The velocity βνX
k  is treated to include such mass property as mass polarity and phase bAνζ . We 

discriminate βνX
k  of regular complex type from βνX

k,rev having reversed complex type. When 

βνX
k,rev appears, it is root-squared-summed to change the matrix type into unit one, and accordingly 

makes an extra time velocity ̃ β νX
0  in eq. (27). For the V-type, ̂ β νX

0  has no regular-complex-type 

value, and is incapable of producing potential in the time direction. It is noted that ̂ β νX
0  in the 

AV-type retains the matrix of γ 5  as an exceptional treatment. We consider that the 

root-squared-sum operation deletes only the matrix properties of γ 0γ k  with (γ 0γ k)2 =1 in 

original matrix properties of γ 0γ 5γ k in βνA
k,rev and then γ 5 remains outside the root.  

The conventional procedure on partial differentiation of the Lagrangian density produces the 

auxiliary field as 

0
0

3~0

0 ˆˆ
XXdX

X

X
X cQ

x

A
B νν

µ
µ

ν

µ
ν βρµ−

∂
∂−= ∑

=
 (28) 

Use of this relation simplifies the potential propagation equation. The time-component of 4-vector 

potential is given by 

( ) ,ˆ 0
00

0
XXdX

X
XX cQ

x
A νν

ν

βρµ
∂

∂−=□   (29) 

where 0
Xxν  in this context corresponds to fd

Xsx0
ν  in the potential propagation. The spatial parts are 

written as  

( ) ( ),ˆ 0
00 XXdXXXXdXXXX cQcQ νννν βρµρµ ∇−×∇−= ββββA□  (30) 

where d’Alembertian is defined with position variables xνX
µ  as 
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( ) ,
3~0

2

2

∑
= ∂

∂=
µ

µ
νX

X
x

□  

and the rotation ∇X ×  and gradient ∇X  operators also work with variables of xνX
k . 

Through the function of magnetic moment, the spatial velocity ββββνX  in eq. (30) generates the 

vector potential, which may be denoted by AX
k,reg . Besides this component, the velocity ˆ β νX

0  in 

eqs. (29) and (30) produces some potential component, i.e.,  ˆ A X
µ  in AX

µ  with description of 

AX
µ = AX

µ,reg + ˆ A X
µ . When a scalar function ̂  F X

0 is adopted, ˆ A X
µ  is expressed by 

,ˆˆ 0
X

X
X F

x
A µ
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∂
∂−=  

.ˆˆ 0
0

0
XdXXX cQF νν βρµ=□

 (31) 

Since ∇X × (∇X
ˆ F X

0) = 0, it gives ∇X × ˆ A X = ˆ B X = 0: ˆ β νX
0  generates no magnetic field at all. 

In addition, introduction of FX
reg in eq. (30) makes the calculation straight-forward as 
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  (32)  

The charge-type potential generation is written for X=V or A as 
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where  0ˆ
Vνβ  is set at zero for V-motion.  The auxiliary field and 4-vector potential are given by 

,ˆ 0
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The particle-1b V-motion makes AbV
0 = 0. Unlike other particles having Qd , particle 1b with 

charge Qb produces the auxiliary field ̂  B 0 in both V- and AV-types. 

The potential calculation needs to take the relativistic effect into account in Eq. (25). Variation 

of the effective-time increment ∂xρXs
0 fd

 at the arrival position produces the change in the potential 

generation position on the basis of Eq. (25) as 

( ) ( ) ( ) .' 001 fd
X

fd
XXXXX x'xd σρσσρ ∂−∂=∂−•−− xxx &  

The relativistic time ratio 
fd
X

fd
X xx 00 /' ρσ ∂∂  needs to be factored in potential propagation calculation. 

The Hamiltonian density ˜ H em for generation of the weak electromagnetic field is derived 

from the Lagrangian density. The canonical conjugate momentums are expressed by 

π X
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 
 , 

where X = V or A. These give the Hamiltonian density for dipole-moment and charge types as 
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 (35) 

where the Hamiltonian is composed of the field-energy-density and interaction-energy -density 

terms. The first one indicates the self-field energy density and is considered to serve as the 

mass-energy density of the particle motion. 

 

6. Angular Momentum Operator and Neutrino Spin 
 

   The angular momentum operator consists of V- and AV-type ones. We first look into the 

eigen-value and -state for the angular momentum operator in the z-direction in a simple case, where 

the motion is written with combined coordinates such as µµ
ν

µ
bXaXX xxx += . The angular 

momentum operator with its matrix type is expressed for a single constituent particle by 
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The eigen value λl ±  and eigen function ξ±  for the matrix form are  

λl ± = iσ 3 lV
3 ± −lA

3( )( ), ξ+ = 1

2

1

1

 

 
 
 

 
 , ξ− = 1

2

1

−1

 

 
 

 

 
 . (36) 

The eigen functions ξ±  have the same form as in eq. (13), with the parameter h = ±1. Therefore, 

it is possible for the eigen function to give eigen values for operators of both the angular 

momentum and the previous Dirac-like equation of eq. (21). We prefer the negative value of 

h = −1 to the positive one, since the negative one stands for simple sum of angular momentum in 

the z-direction as λl− = iσ 3(lV
3 + lA

3) . 

We consider the commutator for the angular momentum and the linear mass operator in the 

space of U c . When eq. (11) is converted in U c  and the spatial parts are summed for particles 0, 

2 and 3, it gives the linear operator for mass as 

λL−,sp = ˜ ∂ νV
k + ˜ ∂ νA

k( )σ k

k=1~3
ν = 0,2,3

∑ = ˜ ∂ Vs
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k( )σ k

k=1~3

∑ ,
 (37) 

where ˜ ∂ νV
k  and ˜ ∂ νA

k  stand for the operators for canonical conjugate momentums, and the 

summation is taken for particles 0, 2 and 3 as ˜ ∂ Vs
k  and ˜ ∂ As

k . The total angular momentum in the 

direction k (=1,2,3) is given in the form of eigen value by 
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where ˜ p νX
k = ˜ ∂ νX

k  indicate the canonical conjugate momentums. The definition produces the 

commutator of 
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The wave function of the system requires the condition for the sum of the right-side terms to be 

zero. Substitution of lVs
3 + lAs

3 = i(L3 / 2) and comparison of the coefficients on spin matrices 

convert the condition into a simple form of 

0 −i
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 
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 

 

 
 = 0 . (40) 

This constitutes an eigen value equation again. The eigen value is obtained to be L3 = ±1, that is, 

( ) .2/133 ill AsVs ±=+  (41) 

The V-type angular motion takes naturally the velocity sum like k
bV

k
aV xx && +ν  in the potential 

interaction, and makes the interaction in the whole directions of 3~1=k . In contrast, the 

AV-type angular motion retains the flexibility of potential interaction through k
bA

ik
aA xex bA && νζ

ν + . The 

dQQ - interaction system should be based on the left-rotation motion. This suggests that the 
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V-motion leads to 03 =Vsl and AV-one produces ilVs )2/1(3 −= , to make the negative helicity as 

13 −=L .  

The eigen value requires for the relation between eigen vectors to be ̃  p Vs
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in the Cartesian coordinate. This relation in 13 −=L  leads to 
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that is, the vector )~,~( 21
VsVs pp  is 2/π  in advance in rotation in comparison to 

)/~,/~( 21 ipip AsAs , and it is written by ipp AsVs /~~ φφ =  with neglecting the phase. We directly see 

the relation of eq. (40) in the cylindrical coordinate. A conversion matrix 
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is defined between momentum vectors in the cylindrical and Cartesian coordinates. Use of D 

produces 
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The condition on eq. (40), therefore, is viewed by the cylindrical momentums as 
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The condition becomes to 

L3 sinθνX
˜ ∂ νX

r + irνX
−1sin−1θνX

˜ ∂ νX
φ( )

ν = 0,2,3
X=V ,A

∑ = 0 .
 (42) 

When the complex types of canonical conjugate momentums are taken into account for V- and 

AV-motions, real and imaginary components of Eq. (42) lead to the forms of 

,/~/sin~sin 3
311

3 ipLilrLp AsAAA
r
VV
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ν
ννν

ν
νν θθ == ∑∑ −−

 (43) 

.~/sin/~sin 3
311

3
φ

ν
ννν

ν
νν θθ VsVVV
r
AA pLilirLip −=−= ∑∑ −−

 (44) 

It is plausible for the negative-helicity state of 13 −=L to produce 0/~ <ipAs
φ and to make a 

positive value of the right-hand side of eq. (43). The V-type radial momentums, therefore, have the 

positive polarity as a whole. This situation is expected to hold good regardless of 13 ±=L . Since 
φ
Vsp~ = ipAs /~φ , in turn, the AV-type radial momentums take a negative value in eq. (44). The 

canonical-conjugate radial momentums of rVpν
~  and r

Apν
~  include the mass polarity therein. This 

indicates that periodical change of mass sign makes the steady-state vibration of radial motion 

under the constraints of eqs. (43) and (44).  
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Equations (43) and (44) indicate that the cylindrically radial momentums on the x-y plane are 

comparable to the angular ones around the z-axis. Since the cylindrical radii need to be positive, the 

radial vibration should take place frequently. This suggests that mass polarity should change once a 

rotation: the mass and radial-momentum polarities vary at the time of half rotation. 

The square of angular momentum is defined as 

( ) ( )
( ) ( )∑∑

∑

+=+=

−−==

k

k
Vs

k
As

k
As

k
Vs

sq
s

k

k
As

k
As

k
Vs

k
Vs

sq
s

cr
s

sq
s

k

k
lsls

llllllllll

ll

.,

,
22 λλ  

The commutator is given by  

( ) ( )
( ) ( ){ }

( ) ( ){ }.~~~~~2

~~~~~2

12211221

12211221

2
,,

2

k
Vs

k
As

k
Vs

k
As

k
As

k
As

k
As

k
As

k
As

k
k

k
As

k
Vs

k
As

k
Vs

k
Vs

k
Vs

k
Vs

k
Vs

k
Vs

k
k

lsspLspLls

lplplplpp

lplplplpp

−+−++

−+−+=

−

∑

∑
−−

σ

σ

λλλλ
 

The right-hand-side terms produce the following condition in a vector form: 

  
˜ p Vs

k{ }+ ) 
p As

k{ }( )+ lVs
k{ }+ lAs

k{ }( )× ˜ p Vs
k{ }+ ) 

p As
k{ }( )= 0 . (45) 

Some algebra on this equation leads to the expression by the use of the polar coordinate for the 
rotational motion part: 
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, X = νV or νA ,   

where the final values are expressed by vectors in the Cartesian coordinate in eq. (46). For the wave 

functions taken in the next section, the expected values in the x – and y-directions easily become to 

zero due to the average on φX  in CX . In addition, the expected values in z-direction go to zero 

by the average on the variable θX . Then, eq. (45) gives the constraint for the z-direction straight 

motion arising by the angular motion as 

˜ p Vs
3s = ˜ p 0V

3s + ˜ p 2V
3s + ˜ p 3V

3s = 0 . (47) 

Therefore, the straight motion in the V-type canonical conjugate momentum of particle 1b 

coincides to that of the whole neutrino system. 
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7. Constituent Motion 
 

The discussion based on eqs. (43) and (44) suggests that the radius of orbital motion should 

always be either increasing or decreasing. We take wave functions, which are parameterized by the 

use of average position x νX
k  and average canonical conjugate momentum p νX

k  for particles 1, 0, 

2 and 3. It is noted that the canonical conjugate momentum µ
πXp1  of particle 1 (X=V or AV, 

−+= or  π ) is formed by sum of particle πa1  motion µ
πaXp1 and its common-base particle 

πb  motion µ
πbXp  as µ

π
µ

π
µ

π bXaXX ppp += 11 . The canonical conjugate momentum µνXp of 

particle 3,2,0=ν  has contributions of particle νπb  and particle aν . We, at first, consider the 

motion of particle πa1  and that of 3,2,0=ν . The wave functions are taken as a product of 

spatial and time ones: the spatial wave function is made of the plane wave traveling in the 

z-direction, and the spherical wave with spherical harmonic functions, while the time wave function 

is given by the plane wave traveling in the ct-direction and the Gaussian function expressing 

oscillation. The linear combination of spherical harmonic functions with definite m stands for 

deviation from the reference point moving in the z-direction. 
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where the basic straight motion in the z-direction is indicated by the superscript 3s, and 

( )r
X

r
Xl xxR νν ;  approximates the first peak of the l th-order spherical Bessel function. The radial 

parameter x νX
r  gives the approximate midpoint in the radial distribution. The wave function for 

particle πaX1  has the same form with the notation of πν aXX 1→ . For particles 3,2,0=ν , 

we set the relation of 
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for spatial and time motions, respectively. 

Spherical harmonic functions on the canonical conjugate momentums are assigned for the V- 

and AV-motions in Table 2. At the transition, mass polarities for particles 0, 2 and 3 are supposed to 

change almost simultaneously. We assign the system to two types of mass allocation, i.e. cases 1 

and 2. Particles 0 and 3 exist in the positive state in case 1, while they reside in the negative one in 
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case 2. Radii of V-type orbital motions are in the expanding state and those of AV-type also 

expanding in case 1, while all the radius behaviors are reversed in case 2. The abbreviation in linear 

combination is shown below the table.  

 
 
 

Table 2  Allocation of angular momentums in U c . The spin part sl  is 

shared by orbital motions of particles 0, 2 and 3. Symbols for linear 
combination is listed below.  
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The wave function for each particle of 3,2,0=ν  has orbits of V- and AV-type in the linear 

combination form. The wave function Vνψ for the V-orbit is taken to be orthogonal to Aνψ  for 

AV-one. This is accomplished by the phase difference of 2/π±  between coefficient vectors 

( )21, VV aa νν  and ( )21, AA aa νν . In this situation, the combination of particles of 3,2,0=ν  and 

the spin part produces an effective orbital state 0
2Y  and spin -1/2, producing a square of combined 

angle momentums of 6.5. In contrast, the particle 1 has the canonical conjugate orbits 22
±Y  and 

1
2
±Y  in the table. These orbits of particle 1 and the effective orbital state 0

2Y of particles 0, 2 and 3 

should constitute a closed shell of 0
0Y . Therefore, the neutrino system finally has the spin of -1/2. 

Since ill AsVs )2/1(33 −=+ , the radii of particles 0, 2, 3 are increasing in case 1, according to 

eqs. (43) and (44). At the half rotation, the masses changes to different polarities and makes case 2. 

The angular motion continues with radii decreasing, to reach the original positions. Such a motion 

is considered to be a kind of steady-state movement, in spite of radius variation. To achieve the 

steady-state motion, it is natural to impose a constraint on average radius in eq. (48), so that the 

phases in de Broglie waves at the half rotation may have a relation of either the same or 

integer-fold to a reference motion. The constraint is required for producing a certain circulation 

period for particles 0, 2 and 3. 

Mass terms (22) and (24) are converted into Hamiltonian with potential terms eq. (27) and (33) 
with regards to the above average quantities: 
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( ) ,j-constraint,, ∑++=
j
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The electromagnetic energies at particle positions by eq. (35) serve as kinetic mass energies. The 

Hamiltonian for cases 1 and 2 produces the steady-state solution and the neutrino mass which is 

consistent to the two cases. A test calculation was made for a neutrino of total energy 1MeV. A 

rough estimate of constituent mass is listed in Table 3, where the average radius of positive motion 

of particle 1b was commonly set at a typical value of 105 fm in both cases 1 and 2. In addition, the 

mass of particle 0 was assumed to be the same as that of particle 1 in case 1, whereas the mass of 

particle 1 was postulated to be equal to that of particle 2 in case 2. Constituent mass values were 

searched by a Monte Carlo method with consideration of preceding constraints, and the total mass 

was chosen to be close to the week-electromagnetic self-energy of the neutrino system. This rough 

estimate gives a total mass of eV level. General calculation with possible less number of 

approximations will lead to a more realistic neutrino mass. 

 
Table 3  Calculation example of constituent mass in units of keV for neutrino 
of total energy 1 MeV. 

 mass#1 mass#0 mass#2 mass#3 total mass 

Case1 1.728 ×101 1.728 ×101 -3.457 ×101 3.032 ×10-2 2.845 ×10-2 
Case2 7.666 -1.524 ×101 7.666 -3.66 ×10-3 9.275 ×10-2 

 

 

 
8. Discussion 

 

The auxiliary field ˆ B A
0  influences to formation of the constituent masses both in the 

electromagnetic self energy and the kinetic mass-energy. There may be some natural materials to be 

capable of generating ̂ B A
0 . When neutrinos are incident to such material region, the mass formation 

mechanism of neutrinos may be disturbed due to contradiction of the electromagnetic energy with 

the kinetic mass-energy. In that case, a neutrino is expected to be dissociated into two groups: it is 

separated into particle 1 and a group of particles 0, 2 and 3 because of disappearance of dQQ −  

interaction. In fact, such reaction was supposed to be found 8) in our group. Biological product of 

raw silk seems to dissociate environmental neutrinos through the generation of ̂ B A
0 , to make a 

appreciable voltage generation by the weak-charge interaction. 

 

9. Summary 
 

Neutrino structure was studied on the basis of weak-charge and weak-electric-moment 

interaction. The constituent particles were assumed to basically reside in individual subspaces 

through the transformation by gamma matrices. The extended Dirac equation consists of linear 

operators based on µγγ 0 and µγγγ 50 matrices, different from µγ and µγγ 5  ones. The exchange 

properties between the linear operators and angular momentum ones give the view that the motion 

of spin -1/2 system should always include vibration of radii and constituent-particle mass-polarity 
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change. The property of gamma matrices imposes some constraints on the constituent particle 

motion: Particularly the momentums in specified directions need to be canceled between V- and 

AV–types. The cancellation in specified directions accompanies the complex-type-unfit motions. 

The system having momentums of µγγ 0 and µγγγ 50 matrices offer a special flexible feature in the 

potential generation through the unit matrix in the time direction. The complex-type-unfit motions 

generate the auxiliary field under the Fermi gauge, and the auxiliary field works to make the 

electromagnetic self energy. The electromagnetic self energy serves as kinetic mass for the 

constituent particle motion. It was considered that such weak-charge and weak-electric-moment 

interaction system readily disintegrated by the external auxiliary field. 
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