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Abstract 
   

Principal Component Analysis (PCA) has been extensively used for 
multivariate data analysis including climate data analysis. However, recent 
studies suggest the possible use of Self-Organizing Maps (SOM) for 
climate data analysis. In order to adequately utilize the PCA and SOM, it is 
crucial to clarify the difference of both methods. This study compared the 
pattern extraction capability of SOM and PCA in order to clarify the 
difference of both methods. Comparisons of the methods were performed 
by conducting two kinds of simulations. The first stimulation confirmed 
SOM can extract non-orthogonal patterns while the patterns extracted by 
PCA are mutually orthogonal. The second simulation investigated how the 
patterns extracted by each method would change when new inputs were 
added. When new inputs were added, PCA did not extract the pattern in the 
original inputs and additional inputs. On the other hand, SOM extracted the 
pattern in original and additional inputs. 
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1. Introduction 

 
Principal Component Analysis (PCA) has been utilized in many research fields 1). The PCA 

(and rotated PCA) has been also extensively applied in meteorology and it has revealed important 
feature of climate fields such as teleconnection patterns 2), climate variability 3) and so on. However, 
deficits of PCA have been also recognized. Controversial problem in applying PCA for climate 
fields is whether the spatial patterns extracted by PCA is real physical mode or not. For example, 
Ito 4) considered physical reality of the Arctic Oscillation (AO), which is defined as the first PC of 
monthly sea level pressure in the northern hemisphere, from many aspects and concluded the AO is 
not real mode but apparent mode. The situation in which a principal component (Arctic Oscillation) 
exists between real physical modes is presented in the schematic diagram of his paper 4). 
Dommenget and Latif 5) mentioned that PCs of the dominant mode are often superposition of many 
different modes and the center of action derived by PCA can be different from the centers of action 
of real physical modes. Considering these pitfalls, they recommended to analyze climate data with 
different statistical methods, not only by PCA. The recently proposed method of the 
Self-Organizing Maps (SOM) is likely to become a complementary or alternative tool of the PCA. 
Reush et al. 6) compared the pattern extraction capability of SOM and PCA using synthetic example, 
and showed SOM is capable of extracting pattern in data without superposition of input data. In 
fact, Recent studies using SOM 7)-11) have given evidences that the SOM will become a 
indispensable tool for meteorological analysis. 

As mentioned above, the PCA (and rotated PCA) and SOM are nowadays applied for 
meteorological analysis, and both methods have similarities such that they can reduce data through 
extracting patterns of given data. However, these methods are actually different and conduct pattern 
extraction in different way. In order to utilize both methods according to the aim of analysis, it is 
crucial to grasp the difference of both methods. 

This study compared the pattern extraction capability of SOM and PCA in order to clarify the 
difference of both methods. The comparisons of both methods were conducted by performing two 
kinds of simulations. The first simulation compared pattern extraction capability for 
non-orthogonal patterns using simulated data which is similar to the example investigated by 
Dommenget and Latif 5). The second simulation investigated how the extracted pattern would 
change when new inputs were added. 
 

2. Methods 
 
2.1 Self-Organizing Maps (SOM) 

The SOM algorithm has been suggested by Kohonen 12), 13) and it has been applied in wide 
ranges of studies such as engineering, medicine and agriculture. Recent studies in meteorology has 
also utilized SOM 7)-11). 

The SOM extracts patterns in high dimensional data and projects the extracted patterns on 
regularly arranged 2-dimensional grids. The 2-dimensional plane where the extracted patterns are 
arranged is called SOM-map and each of the grids on the SOM-map is denoted as node (or neuron). 
Each node has one reference vector, which shows extracted pattern and has the same dimension as 
input vector. Thereby if the SOM-map is composed of 100 nodes (e.g. 10×10 grids), 100 of 
reference vectors are arranged on the map. Reference vectors which are closely located on the 
SOM-map show similar patterns while the reference vectors separately located show different 
patterns. Each of the input vectors will be compared with all reference vectors and assigned into the 
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node where the most similar reference vector belongs to. In summary, the SOM algorithm extracts 
patterns from high dimensional data and arranges the extracted patterns on 2-dimensional plane 
(SOM-map). The SOM also classifies input data into the 2-dimensional plane by comparing the 
input vectors with the reference vectors. 

The details of the basic version of the SOM algorithm 13) is given as follows. As the first step of 
the algorithm, map size (i.e. the number of nodes on the SOM-map) is determined and then give 
initial values of the reference vectors on the SOM-map. Random numbers can be used as the initial 
value of reference vectors although the first and second principal components obtained from input 
data can be used as initial value of reference vectors. As the next step, one of the input vectors is 
selected and the winner node c is identified by computing the distance between the selected input 
vector and all reference vectors. Although any metric can be used in order to compute the distance, 
Euclid distance is commonly utilized. The winner node c satisfies following equation for any i (i=1, 
2, …, n; n is the number of nodes on the SOM-map).  

 ic mxmx −≤−                            (1) 

kRx∈  is the selected input vector and k is the dimension of input vector. k
i Rm ∈  is the 

reference vector in the i th node. After the winner node c is identified, reference vector mi will be 
updated by the following function: 
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Where t means regression step, and hci(t) is a neighborhood function. In this study, the Gaussian 
is employed as neighborhood function: 
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Where 2Rri ∈  and 2Rrc ∈  are position vectors of node i and c. Thereby, ci rr −  indicates 
the distance between the node i and the winner node c. α(t) is some monotonic decreasing function 
with t. σ(t) is also some monotonic decreasing function and defines the width of the kernel. In this 
study, α(t) and σ(t) are given as follows: 
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Where )0(α  is the initial value of α , and T is the maximum of the regression step. 

 
2.2 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) has been widely used as multivariate technique, which 
reduces the multivariate data into a set of uncorrelated new variables 1). In meteorology, data used 
for analysis is often described as spatial data or combination of many variables, and therefore the 
multivariate technique of PCA has been extensively utilized. Hannachi et al. 14) has provided a 
review on application of PCA in atmospheric science, mentioning PCA in atmospheric science is 
used for prediction purposes, smoothing purposes and the identification of teleconnection patterns. 

Rotation of PCs 15), 16) is sometimes conducted in order to avoid pitfalls of PCA. Thereby 
comparison of SOM, PCA and rotated PCA would be informative. However, As this study rather 
focuses on the investigation of the properties of SOM, in order to simplify the comparisons and 
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clarify the characteristics of SOM, SOM and unrotated PCA are compared in this study. 
The following describes the mathematical procedure to compute PCs 1). Assume (m×n) matrix D 

consists of the data to be analyzed. Firstly, mean of each column is subtracted so that the average of 
each column becomes 0. This matrix of 0 mean column will be called as D during the remain of 
this chapter. Then, variance-covariance matrix S (or correlation matrix R) is computed from the 
matrix D. The variance-covariance matrix S is compute by: 

 DD
m

S '
1

1
−

=                                                    (5) 

The variance-covariance matrix S is a symmetric (n×n) matrix. Then, eigenvalue λ and 
eigenvector e of (n×n) matrix S (or R) are computed by solving the following equation : 

eSe λ=                                                              (6) 

It is usual to give constraint of ),,2,1(1 nkek L==  when EOF analysis is conducted. The 
ratio of the variance explained by the j th PC to total variance is called as proportion. The 
proportion of the j th PC is computed as following:                                                           
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Where λj is the j th largest eigen value. In this study, PCs are computed using variance- 
covariance matrix. 
 

3. Simulation data 
 

3.1. Data description 
This study compared the difference of SOM and PCA in order to fully utilize both methods for 

climate data analysis. Although there are many purposes in climate data analysis, one of the 
important objectives is the identification of individual variation modes in climate. Extraction of 
individual variation modes in climate enables the investigation of the relationships of each climate 
mode and deepen our knowledge on climate system. The simulation 1 aims to compare the SOM 
and PCA on the extraction capability of individual variation modes. In the simulation 1, the climate 
variations are presented by vector a±, b± and c±. That is, three of variation modes a, b and c are 
assumed and each mode has positive and negative phase. 

In addition, detection of climate change is also very important objective of climate data analysis. 
Although how the evidence of climate change will appear in climate data is unknown, the climate 
change may be detected as the appearance of climate pattern which did not exist in the past. The 
simulation 2 investigates the performance of PCA and SOM on the detection of new pattern which 
did not appear in the past data. The detail of the simulation data 1 and 2 is explained in the 
following sections 3.2 and 3.3. 
 
3.2. Simulation data 1 

The simulation data 1 is composed of three kinds of variation modes. Two of the variation 
modes are orthogonal to each other while one variation mode is not orthogonal to the other two 
variation modes. We firstly prepared 6×3 matrix whose rows present each input and columns 
represent the dimensions of each input. Each input is composed of positive or negative phase of 3 
kinds of variation modes which are presented by vector a±, b± and c±. These vectors are arranged 
from the 1st to the 6th rows of the 6×3 matrix. The angle between vector a+ and b+ (a- and b-) is 
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90º, vector a+ and c+ (a- and c-) is 60 º, vector b+ and c+ (b- and c-) is 45 º. Norm of each vector is 
standardized into 1 so that each vector (variation mode) has the same amplitude. The simulation 
data 1 is generated by concatenating 150 sets of the 6×3 matrix into one matrix. This yielded the 
900×3 matrix ζ, which is composed of the vector a±, b± and c±. The PCA and SOM were 
respectively applied for this 900×3 matrix ζ( shown in equation (8)).  
 
3.3 Simulation data 2 

18 of data matrices were utilized in the simulation 2. Firstly, we prepared 4×3 matrix whose 
rows present each input and columns show dimensions of each input. The second and fourth row 
show variation mode of vector A+ (0.707, 0.707, 0) and vector A- (-0.707, -0.707, 0), respectively. 
The first and third row consist of random numbers taken from uniform distribution ranging from 
[-1 1]. By concatenating 250 sets of this matrix into one matrix, 1000×3 matrix was obtained. 
Next, 4×3 matrix M4×3 was prepared. The second and fourth row of this matrix are respectively 
variation mode of vector B+ (0.707, 0, 0.707) and vector B- (-0.707, 0, -0.707). The first and third 
row are composed of random numbers taken from the uniform random distribution ranging from 
[-1 1]. Then, k sets (k=5, 10, 15, 20, 25, 35, 45, 55, 65, 75, 100, 125, 150, 175, 200, 225, 250) of M4

×3 were respectively added to the 1000×3 matrix. This provided data matrices which have rows of  
1020, 1040, 1060, 1080, 1100, 1140, 1180, 1220, 1260, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 
2000 and each of the matrices has 3 columns. Eventually, 18 of data matrices ψn (n=1,2,…,18) were 
obtained. The PCA and SOM were respectively applied for each of the 18 data matrices (shown ins 
equation (9)). 
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4. Result of comparison 
 

4.1 Result for simulation data 1 
Simulation 1 applied PCA and SOM for 900×3 matrix ζ. Table 1 gives PCs and proportion 

of each PC obtained by applying PCA for the matrixζ. As seen in Table 1, none of the variation 
modes (i.e. vector a±, b± and c±) is presented as PC. It is also seen that PC 1 and PC 2 account for 
62.2% and 33.3% of total variance respectively, indicating that 95.5% of total variance is explained 
by the first two PCs.  

Figure 1 shows bar chart of reference vectors obtained by applying 3×4 SOM for data matrix
ζ. The node number on the SOM-map is given from the left to right in descending order (i.e. node 
1 for the top left corner, node 4 for the top right corner, node 9 for the bottom left corner and node 
12 for the bottom right corner). The vector a± were clearly shown as the reference vector of node 3 
(vector a+) and 10 (vector a-) respectively, while the vector b± were presented in node 4 (vector 
b+) and 9 (vector b-). The vector c±, which were not orthogonal to vector a± and b±, were also 
presented in the node 1 (vector c+) and node 12 (vector c-). 
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Fig. 1 Bar chart of reference vectors obtained by applying 3×4 SOM for data matrix ζ. The 
horizontal axis shows each dimension of reference vector in each node. Vertical axis shows the value 

of each dimension. 
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4.2 Result for simulation data 2 
Simulation 2 applied SOM and PCA for 18 of data matrices ψn (n=1,2,…,18) in order to 

investigate how the extracted patterns would change when new inputs were added. Figure 2 shows 
the transition of PC 1, 2 and 3 against the increasing of new inputs. The horizontal axis shows the 
number of total inputs used for the computation of PCs and the vertical axis shows the value of 
each dimension. The vector A± (i.e. ± (0.707, 0.707, 0)) were perfectly presented as PC 1 when the 
number of inputs was 1000. However, the increasing of new inputs distorted the vector A± 
presented in the PC 1, and when the total inputs reached 2000, the PC 1 was completely different 
from the vector A±. The vector A± were neither presented in PC 2 nor PC 3. In addition, vector B± 
(i.e. ± (0.707, 0, 0.707)) were not presented in any of the PCs even if total inputs reached 2000. The 
transition of proportions of each PC is shown in Fig. 3. Figure 3 shows that the addition of new 
inputs decreased the proportion of PC 1 while increased the proportion of PC 2. However, the 
changes of the proportion of PC 1 and PC 2 almost stopped when the total inputs reached 
approximately 1600.  

Figure 4 shows the transition of reference vectors which are the most similar to each of the 
variation modes (i.e. vector A± and B±). The most similar reference vector was determined as the 

Table 1 Proportions and PCs obtained by applying PCA for ζ. Proportions are shown by percentage. 
Notice that each PC is composed of 3 dimensions. 

 
 proportion (%) dimension 1 dimension 2 dimension 3 

PC 1 62.2 0.558 0.789 0.259 
PC 2 33.3 0.816 -0.577 0.000 
PC 3 4.5 -0.149 -0.211 0.966 
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reference vector which showed the smallest root mean square error for corresponding variation 
vector. As seen in Fig. 4, vector A± were clearly represented in reference vectors even though new 
inputs were added.  
 

5. Discussion 
 

5.1 Discussion for simulation 1 
The result confirmed that the patterns extracted by PCA can be different from the individual 

modes of original variations 15). There are at least two reasons for this consequence. The first reason 
is that if there are many variation modes in the data, PCA identifies somewhere between the 
variation modes as PC 1, because PCA detects the direction of maximum variance as PC 1.  
Figure 5 shows PC 1 and vector a+, b+ and c+. As seen in Fig. 5, the direction of maximum 
variance, which is presented by the PC 1, exists between the 3 vectors. The second reason is that 
the patterns extracted by PCA need to be orthogonal to each other. Because of this property, if the 
individual variation modes are not orthogonal to each other, at least one of the variation modes can 
not be presented as PC. In this simulation, the PC 1 was quite different from all of the original 
variation modes (see Fig. 5) and the angle between the PC 1 and vector a+, b+, c+ were 56.08º, 
37.91º and 14.91º, respectively. This means that all vectors were not orthogonal to the PC 1, and 
thereby the remaining two PCs (i.e. PC 2 and PC 3), which need to be orthogonal to PC 1, were 
also different from all of the original variation modes. On the other hand, the SOM, which is free 
from the orthogonal constraint, succeeded in extracting all individual variation modes separately. 
This capability of SOM on the separation of individual variation patterns is consistent with the 
discussion given in earlier studies 6), 11). 

The result also clearly showed difference of each method in how the relationships of extracted 
patterns are presented. Although PCA guarantees the extracted patterns are orthogonal to each other, 
SOM arranges the obtained patterns on the 2-dimensional map, allowing to compare the similarities 
(or dissimilarities) of the extracted patterns by their relative locations on the map. Moreover, as 
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Fig. 4 Transition of the most similar reference vectors for vector A+ (upper left), A- (upper right), B+ 
(lower left) and B- (lower right) against increasing of inputs. 
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pointed out in several studies 6), 9), 11), various patterns such as transition pattern from a positive 
phase to negative phase can be presented on the map. 

 
5.2 Discussion for simulation 2 

The result indicates that the SOM has good capability of detecting new patterns which did not 
exist in the past data. Figure 4 suggests that new pattern can be immediately reflected to reference 
vector by addition of new inputs. In this simulation, addition of just 20 inputs significantly 
improved the most similar reference vector to vector B±, which is new pattern, and the addition of 
40 inputs gave fairly good approximation of vector B±. Increasing of new inputs kept decreasing 
the RMSEs for vector B±. Eventually, addition of 500 new inputs gave reasonable approximation 
of vector B±, giving the most similar reference vector for vector B+ as (0.70707, 0.01958, 0.70922) 
with the RMSE of 0.01971. Figure 4 also presents SOM succeeded in extracting vector A± as 
reference vectors, even if the number of new inputs reached 1000.  

On the other hand, as shown in the Fig. 2, the vector B± were not presented as PC even though 
the addition of new inputs reached 1000. Figure 2 also showed PCA failed in retaining the vector 
A± as PC, when new pattern were added. Figure 6 shows the transition of PC 1 against the 
increasing of new inputs. As clearly seen in the Fig. 6, the direction of PC 1 gradually changed 
from vector A+ (original pattern) to vector B+ (new pattern) as the number of new inputs increased. 
The reason for this change is that the addition of new inputs decreased the proportion of vector A± 
while the proportion of vector B± increased, and this resulted in another direction of maximum 
variance which is related to the vector B±. Thereby the direction of PC 1 (direction of maximum 
variance) changed when new inputs were added. Eventually, addition of 1000 of new inputs 
captured neither the vector A± nor vector B±, giving the direction between the vector A+ and B+ as 
the direction of PC 1. In short, the SOM showed good capability of detecting new pattern while 
preserving original pattern. On the other hand, PCA showed difficulty in finding new pattern, and it 
even distorted the original patterns when new patterns were added.  

Although this simulation indicated SOM is able to extract the original pattern and new pattern 
when new pattern is added, addition of too many new inputs which contains a number of new 
patterns maybe deteriorates the original patterns because SOM can not extract the patterns which 
exceed the number of reference vectors on the map. However, even in such a situation, enlargement 
of map size would still keep the original patterns and also extract new patterns as reference vectors. 
Notice that although the random numbers taken from uniform distribution were also added, the 

Fig. 5 3-dimension plot of PC 1 and vector a+, b+ and c+. PC 1 is shown by solid arrow.  Vector 
a+, b+ and c+ are shown by dotted arrow.  
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SOM succeeded in detecting pattern hidden in the noised data. This robustness of SOM for 
extracting patterns in the data with noise is consistent with the results of Reush et al. 6). 

The capability of SOM for detecting new pattern with keeping pre-existing pattern suggests that 
the SOM would be useful for the investigation of climate change. In fact, the studies applying SOM 
for climate data 9), 11) succeeded in detecting decadal scale of climate variability. In order to detect 
climate change signals, it is important to compare the past climate patterns with the recent climate 
patterns. While the simulation indicates the PCA is insensitive in extracting new patterns (one of 
the possible reasons for this is that the new pattern does not account for significant amount of total 
variance), SOM seems to have good capability of detecting new pattern with preserving 
pre-existing pattern. This capability of SOM allows to compare the past pattern with new pattern 
and to analyze what changes have happened from the past to the present. If the patterns associated 
with climate change is orthogonal to the dominant pattern in the past, the PCA would be able to 
extract new climate pattern as PCs, however, the patterns associated with climate change is not 
likely to be orthogonal to the past climate pattern, and it will take a long time until the new pattern 
occupies significant amount of total variance. Considering these results, the use of SOM for the 
extraction of the past and new pattern in climate data and the comparison of the extracted patterns 
is likely to provide useful information which can not be obtained by PCA.  
 

6. Conclusion 
 

This study compared pattern extraction capability of SOM and PCA using simulated data. The 
result indicated the followings. 

 The result confirmed that SOM can extract the patterns which are not orthogonal to each other 
while PCA extracts the patterns as set of orthogonal patterns. The capability of SOM for 
extracting non-orthogonal patterns provides more various patterns than PCA. 

 As PCA is expected to achieve, PCA extracts the PC as the direction of maximum variance. 
However, as shown in the simulations (also discussed in literatures 5), 6), 11)), the direction of 
maximum variance can be obtained as the mixing mode of individual variation modes. 

 When new pattern was added, SOM succeeded in extracting both pre-existing pattern and new 
pattern as reference vectors while PCA extracted neither pre-existing pattern nor new pattern. 
Because the PCA identifies the direction of maximum variance, the addition of new pattern 

Fig. 6 3-dimensional plot of vector A+, B+ and PC 1 of 18 data matrices. The thick solid arrows are 
vector A+ and B+. The thin solid arrows are PCs. The numbers labeled near by the thick solid arrows 

show data matrix number. (the data matrix of even numbers are labeled). 
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resulted in the identification of pattern which exist in the pre-existing pattern and new pattern. 
It should be noticed this study conducted the simulations under the very simplified situation (i.e. 

only a few patterns are included in the data) and compared just some aspects of both methods 
despite these methods have a number of ways to be utilized. Therefore, application of the methods 
for actual meteorological data and evaluation of other aspects of these methods such as 
classification capabilities should be conducted in future study. 
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