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Abstract 
 

   

 A comparison of two methods, Bayesian Method (BM) and Modified 

Bayesian Method (MBM), for estimating directional wave spectra from high 

frequency (HF) ocean radar has been carried out. In terms of validity and 

applicability, the two recent approaches are compared theoretically and 

numerically with the equation derived by Barrick (1972). The results show that 

the performances of the BM and MBM are adequately good. This comparison 

suggested that the MBM was more efficient than the BM since the MBM is 

capable of executing high speed computing and reducing the memory usage. 

Accordingly, the MBM has a good potential for operational application. The 

accuracy and suitability of both the methods are also compared to reliable field 

data of SCAWVEX`s project. The results indicate that the estimated directional 

spectra by using the BM and MBM well agree with the result from buoy. 

Although the BM is very time consuming to estimate directional spectra from 

Doppler spectra, this method is more robust in the presence of noise than the 

MBM.  
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1. Introduction 

 
 The potential of high frequency (HF) oceanic radar has been recognized since Crombie 
observed and identified the distinctive features of backscattered Doppler spectra1). The first exact 
derivation of the formulation was mathematically derived by Barrick retaining to the relationship 
between the Doppler spectra and the directional wave spectra2). Since then, methods for estimating 
directional wave spectrum from HF oceanic radar have been developed to interpret the backscatter 
information in terms of these theoretical relationships.  
 In principle, ocean wave directional spectra can be estimated from the first and second-order 
Doppler spectral components by inverting the integral equation which relates ocean wave spectrum 
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to the Doppler spectrum. A number of approaches have been developed to provide theoretical and 
numerical formulation for estimating the directional wave spectrum from HF radar. Most, however, 
are yet unable to reflect practical application. They have been developed so far to estimate 
directional wave spectrum based on the Barrick’s linearized integral equation 3-9), with many of 
advantages and limitations. As adopted by Lipa and Barrick8), Wyatt9), and Howell and Walsh7), 
those three studies attempted to estimate directional wave spectrum by employing the linear 
inversion. On the other hand, Hisaki6) and Hashimoto methods3-5) adopted the nonlinear form.  
 Hashimoto and Tokuda3) described details of mathematical theory of the Bayesian Method for 
estimating directional wave spectra. The concept was assumed to be an exponential form having 
piecewise constant functions with respect to the frequency and the directional angle. The principal 
advantage of the Bayesian Method, as one of the most accurate and reliable methods provided good 
accuracy and more powerful result for in-situ measurement10), is that it can be applied without 
introducing empirical parameters such as those introduced by Hisaki`s method. Unfortunately, this 
developed method is currently considered time-consuming for iterative calculation5). 
 To resolve this problem, a different approach was considered by Lukijanto et al11) who 
expanded another inversion scheme, so called Modified Bayesian Method, for estimating 
directional wave spectra from HF ocean radar. The proposed method was developed by introducing 
a similar formulation of Maximum Entropy Principle (MEP) presented by Hashimoto and 
Kobune12) which was applied successfully to estimate directional function. Therefore, in terms of 
suitability and accuracy, it is thus possible to make comparisons between the two developed 
methods, i.e. Bayesian Method3) and Modified Bayesian Method11) (hereafter, BM and MBM 
respectively). Further, the application of both methods for estimating directional wave spectra from 
HF radar to actual field data will be described also in this work. 
 The aim of the present study is focused on evaluating comprehensively the existing analysis 
approaches of the BM and MBM. The fundamental equations for Doppler and directional wave 
spectra interpretation is presented in section 2; section 3 reviews these two methods presented and 
examined in the paper. The numerical computation and simulation, and the verification of the 
presented methods will be given in section 4 and 5 respectively. Finally, the conclusion is described 
in section 6. 
 
 

2. Fundamental Equations 
 

 The ocean surface waves consist of various component waves with different frequency and 

propagation direction. The Doppler spectrum,( )σ ω , obtained by HF radar represents the energy 

distribution of the radio wave signal backscattered by the ocean surface waves at the angular 

frequency ω , and is expressed by the summation of the first-order component, (1) ( )σ ω , and the 

second-order component,(2) ( ),σ ω  i.e., (1) (2)( ) ( ) ( ).σ ω σ ω σ ω≈ + The relationship between the 

Doppler spectra and directional wave spectra is mathematically expressed by the following 

equations for deep water conditions 2): 
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where 0 0( ,0)k k=  is the absolute value of the wave number vector 0k  of radio waves, 

( ) ( , )x yS S k k=k  is the wave number spectrum of ocean surface waves and Bω (= 02gk ) is the 

Bragg angular frequency. The independent variables,and ,p q of the integration represent 

coordinates, each of which is parallel to the axis of the radar beam and orthogonal to the radar 

beam respectively. The wave number vectors for ocean waves, 1 2andk k , are related to these 

variables by the following equations: 
  

1 0 2 0( ,  ), ( ,  )p k q p k q= − = − − −k k        (3) 
 
These relations indicate the Bragg’s resonance condition expressed by 
  

1 2 02+ = −k k k       (4) 
 
The coupling coefficient,Γ , shows the degree of the contribution from the wave components 

having the wave number1 2andk k  to the second-order energy distribution of the backscattered 

radar signal, and commonly expressed by E HΓ = Γ + Γ 2), the summation of the electromagnetic 

scattering effect, EΓ , and the hydrodynamic scattering effect,HΓ .  

 Since the first-order component(1) ( )σ ω  and the second-order component(2) ( )σ ω appear in 

different frequencies in the Doppler spectrum( )σ ω , they can be separated; even though they are 

small in magnitude. Consequently, valuable oceanographic information such as surface currents 

and waves can be obtained from the respective spectrum components. As shown in Eq. (2), the two 

component waves having the wave number vector1 2andk k are related to the second-order 

component (2) ( ).σ ω   
 
 

 
Fig. 1 Frequency contours versus wave numbers, for two wave vectors 1 2andk k producing 

second-order component for normalized Doppler spectrum ( )Bη ω ω= , a) 1η > and b) 1η < .  

  
 The illustrations of infinite combinations of1 2andk k which are relevant to the Doppler 

frequencyω  under the restriction condition ofδ function included in Eq. (2) and the resonance 

condition of Eq. (4) are shown in Fig. 1. As has expressed from Eq. (2), the two component waves 

having the wave number vector,1 2and ,k k are related to the second-order scattering 

component (2) ( )σ ω . This means that Eq. (2) includes the contributions of an infinite numbers of 

component waves having different frequencyω and propagation directionθ , and hence in principle, 

the directional spectrum can be estimated based on this information. When the directional spectrum 

is estimated based on Eq. (2), the following problems arise: 
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1) Due to the constraint of theδ function, the integration of Eq. (2) must be executed along a 

curve on the “frequency direction” plane into which the wave number plane is transformed by 

the dispersion relationship. The digitization of the integral of Eq. (2) is therefore complicated. 

2) This is a so-called incomplete inverse problem in which the number of unknown parameters is 

much larger than that of equations obtained from the measurements. This sometimes causes 

the problem that even a small measurement error would seriously deteriorate the reliability of 

the estimate. 

 
 To estimate directional spectrum from HF radar data, it is necessary to solve a complicated 
two-dimensional nonlinear integral Eq. (2). Since Eq. (2) includes the contributions of infinite 
numbers of component waves having different frequenciesω and propagation directionsθ ; thus 
we will focus on the second-order scattering component (2) ( )σ ω and introduce a method for 
estimating directional wave spectra from this second-order scattering component. In this study, 
deep water waves have been examined. Besides, the method developed for deep water waves can 
be easily extended to shallow water waves. 
 For mathematical convenience, the parameters are non dimensionalized by the Bragg angular 
frequency, ,Bω and the doubled wave number of the radio wave,02 ,k as follows: 
 

0
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The integration of the second-order component Eq. (2) with respect to the two 
variables andp q axis can be transformed into a single variable since the integrand includes the 
delta functionδ . If the wave propagation direction1θ  of the wave number vector1k is adopted as 
a single independent variable for the integration, Eq. (2) can be transformed as follows 13) : 
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and 1 .y k= %  ŷ can be obtained by solving Eq. (9). 
 

4 2 1/ 4
1 2 1ˆ ˆ ˆ( 2 cos 1) 0m y m y yω θ− − + + =%         (9) 

 
*ik%  is the nondimensional symmetry wave number vector of ik%  with respect to the radar beam 

axis (the axisp − ). An upper limit of integration can be given by Lθ π=  when 2,ω ≤% and 
1 2cos (2 / )Lθ π ω−= − % when 2ω >% , respectively. The wave number spectrum( )S k in Eq. (7) can 

be transformed into the frequency-direction spectrum (directional wave spectrum)( , )S f θ as 
follows: 
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 Thus, by imposing the directional wave spectrum( , )S f θ , the second-order component 

(2) ( )σ ω  measured by the HF radar can be theoretically calculated by numerical integration of Eq. 
(6).  
 
 

3. Analysis Methods for Estimating Directional Wave Spectra  
 
 A formulation and procedure to evaluate the Bayesian methods for estimating directional wave 
spectra from HF radar, based on Hashimoto and Tokuda3) and Lukijanto et al11), are presented in 
this section: 
 
3.1 A Bayesian Method (BM) 
  
 In the original BM, directional spectrum is treated as a piecewise constant function with 
respect to each energy component of frequency and direction, including M N× unknown 
parameters. Here, M is the number of frequency segments, while N is the number of direction 
segments 3). The problem for estimating directional wave spectrum with HF radar is to estimate a 
non-negative solution of ( , )S f θ based on simultaneous integral equations of Eq. (6) set up 
for (2)( )σ ω%% . Although, generally the directional wave spectrum is ( , ) 0S f θ ≥ , in this study, it is 
treated as ( , ) 0S f θ > , and assumed to be exponential piecewise constant function over the 
directional range from to0 2π and the frequency range from maxmin tof f 14). In addition, this 
assumption is commonly employed in numerically generating random waves. 
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where , ln{ ( , ) / }i j i jx S f θ α= , M is the number of segmentsf∆ of frequency ,f while I is the 

number of segmentsθ∆ of directionθ , and 
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α is a parameter introduced to normalize the magnitude of ,i jx , and given by 
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 The numerator on the right hand side of Eq. (13) is approximately given by the following 
equation15): 
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where 2 2
0( / ) 8 | | /BW kω ω = Γ  is a weighting function and Γ is an approximate coupling 

coefficient of Γ 15). The frequencyf and the direction θ  are discretized by the following 
equations respectively. 
 

1 1ln ln ,i i i j jf f fµ θ θ θ− −= = + ∆ = + ∆                                  (15) 

 
 Substituting Eq. (11) into Eq. (6) yields an integral equation including unknown 
variables .M N× After digitizing the Eq. (6) by replacing the integration with the summationΣ , 
the integral equation can be approximated by the nonlinear algebraic equation. However, it is 
unrealistic to assume that the energy distribution over wave frequencyf and wave propagation 
directionθ can be discontinuous. Thus,( , )S f θ is generally considered to be a continuous and 
smooth function.  
 The integral of Eq. (6) is, however, a curvilinear integral where the integration must be 
performed along a special path in( ,  )f θ plane due to the restrictions of Eqs. (4) and (9). As 
mentioned earlier, Eq. (6) includes a singular point, and has to be integrated with smaller segments 
around the singular point. In discretizing Eq. (6), the value of the directional wave spectrum along 
the path in( ,  )f θ plane is linearly interpolated by the neighboring grid point values of the 
directional wave spectrum in the same way as Hisaki 6), and expressed by 
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where ln fµ = , 0  and 1ξ ζ≤ ≤ . Eq. (6) can therefore be digitized with respect to the grid point 

values of ( , )i jS µ θ  with the desired degree of accuracy. 

 Finally, by taking into account the errors kε  of the Doppler spectrum, the integral Eq. (6) can 

be approximated by the nonlinear algebraic equation including the unknown 1, 1 , ( , , )t
I Jx x=X L , 

and expressed by: 
 

(2) ( )k kk Fσ ε= +X%  (17) 

 
where the suffix k  indicates a value of the Doppler frequency kω%  ( 1, , )k K= L . The errors kε  
( 1, , )k K= L  of every Doppler frequency kω%  are assumed to be independent of each other and 
their occurrence probabilities can be expressed by a normal distribution having a zero mean and 
variance 2λ . Then, for a given (2)( 1, , )k k Kσ =% L , the likelihood functions of X  and 2λ  is given 
by: 
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 It should be noted that the directional wave spectrum ( , )S f θ  has thus far been expressed by a 
piecewise constant function, with the correlation between the wave energy of each segment of 

f θ∆ × ∆ not yet having been taken into account. As directional wave analysis is commonly based 
on the linear wave theory, it can be assumed that each of energy on each segment is independent of 
each other. In general, ( , )S f θ  is considered to be a continuous and smooth function. This allows 
an introduction of an additional condition that the local variation of , ( 1, , ;  1, , )i jx i I j J= =L L can 
be well approximated by a smooth surface so that the value given in Eq. (19) is expected to be 
small 14). 
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, 1 1, , 1 1, ,4i j i j i j i j i jx x x x x+ + − −+ + + −  (19) 

 
 In the upper boundary (i I= ) and the lower boundary ( 1i = ) of the frequencyf , the value 

given in Eq. (20) is expected to be small as a priori condition. 
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(where ,0 ,i i Jx x= ， , 1 , 1i i Jx x− −= ) 
 
From algebraic viewpoint, Eq. (21) can be written in the matrix form, as 

 
2|| ||DX  (22) 

 

whereD is the coefficient matrix of Eq. (21). It is, therefore, surmised that the optimal estimate of 

( , )S f θ  is the one maximizing the likelihood function of Eq. (18) under the condition of Eq. (22). 

More precisely, the most suitable estimate is given as a set of 1, 1 , ( , , )tI Jx x=X L  which 

maximizes the following equation for a given hyperparameter 2u . 
 

2
2 2

2
ln ( ; ) || ||

2

u
L λ

λ
−X DX  (23) 

 
 The hyperparameter 2u  is a type of weighting coefficient which represents the smoothness 

of X , where large or small values ofu , respectively, give an estimate of the directional wave 

spectrum having either smooth or rough shapes. It should be noted that Eq. (23) corresponds to the 

Bayesian relationship expressed by the following equation when we consider the exponential 

function with the power of Eq. (23). 
 

2 2 2 2 2
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where 2 2

POST( | , )p u λX  the posterior distribution, and 2 2( | , )p u λX  the prior distribution of 

1, 1 , ( , , )tI Jx x=X L expressed by 
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 The estimate X  obtained by maximizing Eq. (23) can be considered as the mode of the 

posterior distribution 2 2
POST( | , )p u λX . Now, if the value of u  is given, then regardless the value 

of 2λ , the values of X  that maximize Eq. (23) can be determined by minimizing 
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{ } 2(2) 2 2
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F uσ
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− +∑ X DX%  (26) 

 
 Eventually, from the view point of the suitability and smoothness of theX estimation, the 

determination of u  and the estimation of 2λ  can be automatically performed by minimizing the 

following ABIC (Akaike’s Bayesian Information Criterion)16):  

 
2 2 2ABIC 2ln ( | ) ( | , )L p u dλ λ= − ∫ X X X  (27) 

 

 

3.2 A Modified Bayesian Method (MBM) 

 
 The major distinct modifications are described in this section which focuses to reduce the 

computation time by modifying the formulation of the directional spectrum and the procedure of 

iterative computation. Here, with regards to the( ),S f θ in Eq. (10), a new formulation of function 

expressed by Eq. (28) was developed by introducing a similar formulation of Maximum Entropy 

Principle (MEP) described by Hashimoto and Kobune12). The determination of the directional wave 

spectrum from HF radar can then be achieved by the inversion of Eq. (6) using the similar way as 

described by Hashimoto and Tokuda3). From this point of view, Lukijanto et al11) expanded the 

directional wave spectrum function, as an exponential function having the power expressed by a 

Fourier series over the direction while piecewise constant function over the frequency: 

 

 

{ }0
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( , ) exp ( )  ( )cos ( )sin
K

i i k i k i
k

S f a f a f k b f kθ θ θ
=

 = + + 
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∑      (28) 

 

where if is wave frequency discretized by the Eq. (15), meanwhile ( )k ia f and ( )k ib f are unknown 

coefficients to be estimated.  

 In this case, M is assumed to be the number of frequency segments and K is the number of 

Fourier series, and then the number of unknown coefficients becomes ( )2 1 .M K× +  Hashimoto 

and Kobune12) explained that although the number of Fourier series used 1K = , not only the narrow 

single peak directional spectrum, but also very wide energy distribution was accurately shown. 

Substituting Eq. (28) into Eq. (6) yields an integral equation including unknown 

coefficients ( )k ia f and ( ).k ib f  Here, fine segment around the singular point is necessarily adopted 

to have accurate calculation. Similar way to the BM, the integration must be performed along a 

path in( ),f θ plane as described in section 2, due to the restriction condition ofδ function included 

in Eq. (2). Afterwards, Eq. (6) can be digitized with respect to the grid point values 

of ( , )i jS µ θ described in Eq. (16). Then, by taking into account the errors lε  of Doppler spectrum, 

the integral of Eq. (6) can be approximated by non linear algebraic governing equation including 

the unknown variable 0( ), ( ) & ( ); 1,..., , 1,..., ,i i ik ka f a f b f i M k k  = = =X which is expressed and 

corresponds to the Eq. (17). Moreover, the likelihood functions of X  and 2λ  is also given by 

similar to Eq. (18).   

 Although different assumption of the energy distribution over propagation direction was 

applied to the MBM, each component in frequency still remains discontinuous. However,( , )S f θ  

is generally considered to be a continuous and smooth function in both frequency and direction. 
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This allows an introduction of additional conditions that the coefficients of ( ) and ( )k i k ia f b f in Eq. 

(28) are locally continuous between adjacent frequencies in directional spectrum ( ), .S f θ  Hence, 

the following values can be assumed to be small: 

 

1 1

1 1

( ) 2 ( ) ( ) small  

( ) 2 ( ) ( ) small  
k i k i k i

k i k i k i

a f a f a f

b f b f b f
+ −

+ −

− + → 
− + → 
   (29) 

 

 Under this assumption, Eq. (29) is not valid for the lower limit( )1i = and the upper 

limit ( )i M= of frequency f, In this case, ( )k ia f and ( )k ib f become a type of boundary conditions. 

Therefore, these boundary conditions have to be properly given. However, it is difficult to give 

those values in advance before the estimation. Alternatively, other assumption may be applied to 

give the boundary values.  

 When the order of the Fourier series in Eq. (28) is K, then the number of unknown parameters 

becomes (2 1),M K× + and the equation assumed in Eq. (29) will be( 2) (2 1),M K− × +  while the 

number of fundamental equation with respect to the second order component(2) ( )σ ω is L. Thus, 

under the condition of ( 2) (2 1) (2 1),L M K M K+ − × + ≥ × + the boundary parameters of 

1( )ka f and 1( )kb f , ( )k Ma f and ( )k Mb f may automatically be estimated using the least squares 

method. Unfortunately based on our investigations, this method sometimes causes unstable 

estimation of the coefficient ( ) and ( ).k i k ia f b f  For convenience; therefore the following 

conditions are assumed to be small at the boundary frequency of 1 andi M= : 
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These conditions impose a small energy change between the adjacent frequencies at the boundary 

frequencies. In the following, an operational matrix D is introduced for convenience. D is an 

operational matrix which expresses the condition of Eqs. (29) and (30). Therefore, if the value 

obtained by 2|| ||DX  is small, the results of directional spectrum estimation appear to be smooth. 

Thus, it is supposed that the optimal estimate of ( , )S f θ  is the one that maximizing the likelihood 

function of Eq. (18) under the condition of Eq. (22) in the same way as BM. More precisely, the 

most suitable estimate is given as a set of[ ]( ) & ( )
t

k i k ia f b f=X which maximizes the equation for a 

given hyperparameter 2u as shown in Eq (23). Based on the posterior distribution as defined in Eq. 

(24), the prior distribution ofX can be expressed as follows: 
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The estimate X  obtained by maximizing Eq. (23) can be considered as the mode of the posterior 

distribution 2 2
POST( | , )p u λX . Now, if the value of u  is given, regardless of the value of2λ , the 

values of X  that maximize Eq. (23) can be determined by minimizing: 
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 Moreover, by minimizing the ABIC in Eq. (27), the determination of u  and the estimation of 
2λ  can be automatically deduced also. Based on the above analysis, we can summarize that the 

inversion problem of the BM and MBM are literally similar in methodological sequences. The 

detail numerical calculations as well as the discussions of some ideas for improving them are 

briefly described in the following sections.   

 

 
4. Numerical Computation Procedures 

 
4.1 Linearization of Equations to be Solved 
 
 This section provides computational information about the two developed techniques. Before 

doing this, an overview of the numerical computations will be presented and important features of 

the procedures will be highlighted. Numerical computations were conducted to estimate the 

directional wave spectrum using the BM which requires minimization of Eqs. (26) and (27); the 

similar procedure is applied to the MBM for Eqs. (32) and (27). However, it is impossible to carry 

out them analytically.  

 Since the first term on the right-hand side of Eq. (17) is nonlinear with respect to,X it is 

linearized using Taylor expansion around0 ,X having value close to estimate solution 

of 1,1 ,,...,
t

I Jx x =  X and ( ) ( )&
t

k i k ia f b f=   X for the BM and MBM respectively. It can be 

written as: 
 

( ) ( ) ( ) ( )0 0 0k k kF F G= + −X X X XX    (33) 

 

in which: 

 

0
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=
 = ∂ ∂ ∂ ∂ X X

G X X XL   (34) 

 
 Substitution of Eq. (33) into Eq. (17) and rearrangement in the matrix form give the following 

linearized equation with respect to the X.   

 
= +B AX E  (35) 

 
where 
 

[ ] [ ]  

1 0 0 1

  (2) (2)
1 1 0 1 0 0 0 0 0

( ), , ( ) , , , ,

( ) ( ) , , ( ) ( )

t

K K

t

K K KF F

ε ε

σ σ

= =

 = − + − + 

A G X G X E

B X G X X X G X X

L L

% %L

   (36) 

 

Therefore, the Eq. (26) and Eq. (32) for the BM and MBM respectively, become:  

 
2 2 2( ) || || || ||W u= − +X AX B DX   (37) 

 
 
4.2 Some Modifications for Improving Iterative Computation 
  
 The initial value has been modified to minimize Eq. (37). As described in Hashimoto and 

Tokuda3), for given u in Eq. (37) and Eq. (27) in our numerical methods, the optimum valuêX  
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can be estimated by the least-squares method. However, particularly for the MBM, different 

expression has been possibly proposed for Eq. (33) by modifying Eqs. (29) and (30). That is, an 

alternative expression is introduced by introducing 0∆ = −X X X . Then, another form of Eq. (33) is 

redefined and expressed as: 
 

( ) ( ) ( )0 0k k kF F G= + ∆X X XX    (38) 

 

In this case B is defined as ( ) ( ) ( ) ( )2 2
1 1 0 0,...,

t

K KF Fσ σ = − − B X X% % and Eq. (35) becomes 

.= ∆B A X + E  This is the linear equation with respect to the.∆X  Therefore, the alternative 

additional conditions for Eqs. (29) and (30) may be used with respect to the∆X : 

 

1 1

1 1

( ) 2 ( ) ( ) small

( ) 2 ( ) ( ) small and

( 2,..., 1)

 
k i k i k i

k i k i k i

a f a f a f

b f b f b f

i M

+ −

+ −

∆ − ∆ + ∆ → 
∆ − ∆ + ∆ → 
= − 

1

1

( ) 2 ( ) small

( ) 2 ( ) small

( 1 )

k i k i

k i k i

a f a f

b f b f

i and M

+

+

∆ − ∆ → 
∆ − ∆ → 
= 

 

 

Note that after rearrangement, a new matrix form can be deduced as:    

 
2 2 2( ) || || || ||W u∆ = ∆ − + ∆X A X B D X    (39) 

 

Eqs. (37) and (39) seems to be very similar except unknown variable and .∆X X  Actually, the first 

term in the right hand side of the both equations are same. However, the minimization of the 

second terms in each of Eqs. (37) and (39) has different meaning. That is, although the 

minimization of the second term in Eq. (37) expects the smoothness and the continuance of the 

directional spectrum itself. Meanwhile, the one in Eq. (39) expects the smoothness and continuance 

of the difference of the directional spectrum between the successive iterative computations. The 

success of this modified method with Eq. (39) was described in Lukijanto et al11). 

 

 

4.3 Estimation Procedures for a General Data Set 
 
 According to Hashimoto10), the least-square method is carried out for Eqs. (37) and (39) via 

Householder transformation by transforming a matrix to an upper triangular matrix by repeating a 

mirror image transformation as follows.  

 Although, the following procedures are explained for the minimization of Eq. (37) of BM, 

X is to be replaced by∆X for the minimization of Eq. (39) of MBM. Then, Eq. (37) can be 

rewritten as: 

 
2

( )
0

W x
u

   
= −   
   

A B
X

D
     (40) 

 
 
For convenience, the following matrix is assumed: 
 

0u

 
=  
 

A B
Z

D
   (41) 
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Afterward, the Householder transformation is applied such that the following matrix is obtained: 
 
 

1, 1, 1

1, 10

l K

K K

S S

S

+

+ +

  
  

=   
  
   

UΖ

K

O M

L

      (42) 

 
where U denoted the transformation operator. Eq. (40) can then be rewritten as: 
 

( ) ( )
2

1, 1, 1, 112

1, 1,

_0
0

l K K

K KK K K

S S S

u
SS

+

+ +

    
    − =     

    
    

X
A BU X UD

X

K

MO M M

L

 

 

2

1, 11,1 1, 1
2

1, 1

, 1,

_

0

KK

K K

K KK K K

SS S

S

SS

+

+ +

+

    
    = +    

    
    

X

X

K

MO M M

L

          (43) 

 
As the second term of the right hand-side of Eq. (43) is independent ofX , the estimate of ̂X  

which minimizes Eqs. (39) or (40), is obtained by solving Eq. (44).  
 

1, 11,1 1, 1

, 1,0

KK

K KK K K

SS S

SS

+

+

    
     =    

    
    

X

X

K

MO M M

L

            (44) 

The estimate variance of the residual,2σ̂ , in Eq. (39), is calculated by using 

 

( )2 2
1, 1ˆ 2K KS Nσ + +=             (45) 

 
 Thus, the ABIC (Eq. 27) can now be calculated. By denoting ˆ ˆandA B as the final coefficient 

matrices andA B used to determine estimateX̂ , the right-hand side of the posterior distribution Eq. 

(24) can be expressed as: 

 

( ) ( )

( )

2 2 2

22 2
2 2 2

2 2

2 2 2

, ,

1 1 ˆ ˆexp exp
22 2 2

ˆ ˆˆ1 1 1ˆexp exp ˆ
22 02 2

KN

KN

L x p x u

u u

u

u u

σ σ

πσπσ σ σ

πσπσ σ σ

     ≈ − − −     
      

             = ×− − −          −                  

AX B DX

BA A
X X X

D D

  (46) 

 
Applying  
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( )

( ) ( ){ }
1
2

2

2

2

ˆ1exp ˆ
2

ˆ ˆdet2
K t t

dx
u

u

σ

πσ

∞

−∞

−

   
−   −    

= +

∫
A

X X
D

A A D D

          (47) 

and integrating both side of Eq. (46) with respect to X gives  

 

( ) ( )

{ } ( ){ } 1
2

2 2 2

2 22 2
2

, ,

11 ˆ ˆ ˆ ˆ ˆ ˆexp det
2 2

N
K t t t

L x p x dxu

u u u

σ σ

πσ σ

∞

−∞

−  = − − +  +    

∫

AX B DX A A D D

       (48) 

 
From these results, the ABIC given in Eq.(27) becomes 
 

( ) ( )
( ) ( ) { } ( ){ }

2 2 2

2 22 2 2 2
2

ABIC =-2ln , ,

1 ˆ ˆ ˆ ˆ ˆ ˆ2 ln ln ln det2 t t

L x p x u dx

N K u u u

σ σ

πσ
σ

∞

−∞

= − + +− + +

∫
AX B DX A A D D

   (49) 

The estimate of the variance (2σ ) which minimizes the ABIC is obtained by solving: 
 

( ) { }2 22
2 2 4

2 1ABIC ˆ ˆ ˆ ˆ 0
N

u
σ σ σ

∂ = − =− +
∂

AX B DX   (50) 

with the solution being the optimal estimate of 2σ minimizing the ABIC. Thus, the estimate2σ̂ is 
 

{ }2 22 21 ˆ ˆ ˆ ˆˆ
2

u
N

σ = − +AX B DX             (51) 

 
Finally, the resultant ABIC is obtained as 
 

( ){ } ( ) ( ){ }2 2 2ˆ ˆABIC 2 ln 1 ln ln detˆ2 t tN K u uπσ= + − + +A A D D   (52) 

 
Note that Eqs. (51) and (45) are identical. In the computation of the ABIC, those are also necessary 

to perform the calculation of the determinant of the matrix in the last term of Eq. (52). If the last 

term on the right-hand side of Eq. (52) is directly calculated using a conventional matrix 

computation method, obtaining the ABIC is often impossible due to the floating-point exception 

rule utilized in digital computers. Consequently, we use:  
 

( ){ } 22
,

1

ˆ ˆln lndet
K

t t
i i

i

Su
=

=+ ∑A A D D    (53) 

 
where ,i iS denotes the diagonal element of the coefficient matrix Eq. (42). The optimal 

hyperparameter u that minimizes the ABIC is determined via trial and error by changing m in the 

following equation. 
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( )1,2,...mu ab m= =      (54) 

 
where a and b are the search coefficients, according to the Hashimoto and Tokuda3), here chosen for 

the convenience as 0.1 and 0.5a b= = . Finally, the whole procedure mentioned in this section is 

summarized as follows: 

1. For a value of the hyperparameter u given by Eq. (54) and the initial 

value ( )( )0 0; 1,...,i i K= =X X , computeX̂ using the least-squares method to iteratively 

minimize Eq. (39). That is, for 0,X a new value 1X is obtained by applying the least-squares 

method.  

2. Then by replacing 0,X Eq. (37) is terminated when the standard deviation of the 

differenceX values in two successive steps is less than310− . The iteration of this process 

continues untilX converges toX̂  for the given .u   

3. Use the givenˆ , anduX Eq. (51) to determine (2σ ), and then compute the ABIC in Eq. (52). 

4. After changing the value ofu given by Eq. (54), then repeat the process of 1) and 2). For 

brevity, from various estimates ofX̂ obtained through the process 1) through 3), select the 

values 2û and 2σ̂ , as well asX̂ which yields the minimum ABIC. 

 
4.4 Examination of the BM and MBM by Numerical Simulation 
 
 For the purpose to compare the performance of the two methods, i.e. BM and MBM, the 

numerical simulations have been tested upon: ability to estimate correctly, robustness and 

reliability of results. Subsequently, the equation containing unknown parametersM N× is needed 

to solve in the case of BM in which M and N are the number of the frequency and the directional 

segments respectively. For practical convenience to limit computation time processing, basically 

the too large number of segments can not be set. Based on the computational efficiency, the validity 

and accuracy of the methods are qualitatively compared. Therefore, the time taken to do this 

computation is the limiting factor for the practical analysis as described in Secs. 4.1- 4.3. 
Figure 2 shows the results of numerical simulation using BM. Two types of bi-directional 

wave field are assumed where dominant energy peaks of the directional wave spectrum are 

assumed to be in: (a) different frequencies, and (b) the same frequencies. The benchmark (true) of 

directional wave spectra is drawn at upper panel left side whereas the estimated one is drawn 

underneath the benchmark (true) of directional wave spectra. The middle and the right panel of 

each figure show the frequency spectrum( )S f and the directional distribution function( )G θ in the 

frequency 0.093(Hz)f = of the directional spectrum respectively. Each directional wave spectrum 

was estimated from the two Doppler spectra which frequency of the radar and the crossing angle of 

radio signals ( )δθ were assumed to be 24.515 MHz and75o respectively. The significant wave 

period 1/3T of 5 and 12 seconds are also assumed for Fig. 2.a and 10 second for Fig. 2.b. The thin 

lines represent the true frequency spectrum and directional distribution function. While the thick 

lines represent the estimation.    

The result shows that the estimated directional wave spectrum by using BM is qualitatively 

good agreement with the true one. As shown in Fig. 2.a, the estimated frequency spectrum is 

underestimated around the energy peak. Although the estimated directional distribution function is 

overestimated around the energy peak, the locations of energy peaks of the estimated frequency 

spectrum and the estimated directional distribution function are properly estimated.  
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 Figures 2.b shows that the estimated directional wave spectrum and directional distribution 

function perform similar trend with that assumed to be in different frequencies (Fig. 2.a). However, 

the estimated frequency spectrum is underestimated around the energy peak. From the numerical 

simulation, we concluded that the BM has demonstrated to be a stable and reliable method for 

estimating directional wave spectra from Doppler spectra. However, the disadvantage of BM is a 

time consuming method related to the matrix calculation of Eq. (37) as discussed in Secs. 3 and 4. 

Thus great computational efforts have to be taken into account. 

 

 
 
Fig. 2. The directional wave spectra estimated by using Bayesian Method (BM) where the dominant energy 
peaks of directional wave spectra are assumed to be in (a) different frequency and (b) same frequency at the 
different crossing angle(75 )o of two beam axes (described by Hashimoto and Tokuda3) ). The thin lines 
represent the true frequency spectrum( )S f and directional distribution function( )G θ . While the thick lines 
represent the estimation ones.   

  

 In order to verify effect of the modifications described in section 3.2, extensive tests were 

done to analyze the accuracy and applicability of the MBM compared to the previous BM. Figure 
3 shows bi-directional wave field calculated by MBM using Eq. (39). The same conditions are set 

to be equal to those of Fig. 2. 

 The results show that the estimated directional wave spectrum is qualitatively good agreement 

with the true directional wave spectra. The estimated frequency spectrum is underestimated around 

the energy peak. However, the slight excessive energy was estimated at the lower frequency side. 

The numerical result where dominant energy peaks of the directional wave spectrum are assumed 

to be in different frequencies (Fig. 3.a) shows that the estimated frequency spectra perform good 
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enough with those assumed to be in the same frequencies (Fig. 3.b). Although the estimated 

directional distribution function shows a little inconsistency results, the estimation accuracy is 

acceptable in practical application.  

 

 
Fig. 3. As for Fig. 2 but estimated using MBM described by Lukijanto et al11). 

 

 Based on the results, the BM and MBM have suggested that there are reasonable agreements 

between the true and estimated directional wave spectra in terms of the energy spectrum, as 

illustrated in Figs. 2 and 3. In addition, in the estimation of the directional spectrum using a BM, a 

normal personal computer takes tens of seconds to compute the directional spectrum even in the 

case of M=N=16. Meanwhile, in the case of M=N=32, it takes several minutes to compute which is 

presently impractical for real-time processing. In order to reduce the computation time, the MBM is 

subsequently applied. The results showed that an enormous amount of computation time can be 

reduced by using MBM. The estimation of the directional spectrum was obtained within several 

seconds. This computation time demonstrates 10 to 100 times faster than using BM, which is 

permissible for practical use. Having such properties, the MBM are capable of executing the high 

speed computing and consequently possible to reduce memory required for computations. The 

important point can be suggested that the MBM performs more efficient than the BM. Accordingly, 

the MBM has a good potential for operational application.  

  From the abovementioned explanation, the MBM may turn out to be not only accurate and 

reliable but also practical method for estimating directional wave spectra from HF radar. 
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Additionally, in the following section the accuracy and suitability of both methods, the BM and 

MBM, will be verified with actual field data obtained from the SCAWVEX project. 
 

 
5. Verification of Applicability of MBM with SCAWVEX`s  Data 

 
5.1 SCAWVEX Project 
 

The data set was collected by the Surface Current and Wave Variability Experiments 

(SCAWVEX) project with the data quality considered to be reliable enough and confirmed17). For 

that reason, these data were selected to demonstrate the validity of the BM and MBM. In this 

project, advancing coastal HF radar applications was one of the objectives of SCAWVEX.  

Observations by these HF radars were made at the two sites at Holderness in the United of 

Kingdom (UK) located on the east coast of the UK and facing the North Sea shown in Fig. 4. The 

observed points A to I are indicated for which directional wave spectra will be computed by using 

BM and MBM. The stripe symbol denoted by Master and Slave shows the locations of HF radar 

points, whereas the white circles represent the Doppler spectra measurements points. These 

observations were carried out from December 1995 to January 1996.  

 

 
Fig. 4. Position of HF ocean radar systems at Master and Slave (UK) and the wave buoy deployment. The 
observed points A to I are indicated for which directional wave spectra analyzed by BM and MBM. 

 
The observation data obtained at 14:00 on December 21, 1995, are used where the 

bi-directional wave fields were formed at 00:00. As reported by Hashimoto et al5), before and after 
this date, the low-pressure system was stationary in the sea area west of the UK. Wyatt18) explained 
also that during that date, swell dominating over most of the region propagating from north and 
refracting toward coast occurred. To the south, south-easterly wind waves dominate. In addition to 
the HF radar systems, a wave buoy (mark ◎) has also been deployed at depth of 12.5m17). The 
wave buoy was deployed to compare the directional spectrum estimated from Doppler spectra by 
BM and MBM across the region. 
 Hashimoto et al 5) reported that the observation was carried out for 5 minutes at each station 
and repeated every twenty minutes providing 896 coherent samples at each measurement point. To 
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estimate the Doppler spectra, 512 sample FFTs were used with a 75% overlap to provide 4 spectra 
for each five-minute period. Three successive five minute collections were then averaged to 
provide an hourly averaged (from 12 individual) Doppler spectrum. In SCAWVEX, the method 
developed by Longuet-Higgins et al19) was used to analyze the directional wave data measured by 
buoy. The resultant Fourier coefficients for the directional spectra have been preserved as the 
parameters of the directional spectra. Based on these Fourier coefficients, we applied the method 
developed by Kim et al20) to obtain the directional spectra using the Maximum Entropy Principle 
method12). Details of the analysis of the wave data and computations of the directional wave spectra 
with BM can be found in the previous study reported by Hashimoto et al5).  

 

 

5.2 Directional Spectrum Estimations 
 

Throughout this work, the nonlinear inversion with the BM and MBM developed by 
Hashimoto and Tokuda3) and Lukijanto et al11) respectively are applied to the Doppler spectra 
measured in the SCAWVEX data as mentioned above. In the following, we estimate the directional 
spectra from observed points A to I as shown in Fig. 4 in order to verify the applicability and 
accuracy of the both methods. 

 

 
Fig. 5. Estimation of directional wave spectra by Bayesian Method (BM) at observed points A to I 5). 

 

Doppler spectra used in this study were analyzed using procedures as described in Hashimoto 
et al5), in which the reliable directional spectra at observed points A to I were successfully estimated 
by BM widely distributed in those areas, as shown in Fig. 5. The results showed that directional 
spectra could be measured consistent in the proper directions with the swell and the wind waves 
propagating.  

It should be noted that for each numerical computation by using BM, the accuracy of 
numerical estimation depends on the assumed number of parameters. However, for instance, in the 
case of M=N=16, the computation time required was about ten seconds which is permissible for 
practical use. Meanwhile, in the case of M=N=32, the computation time took several minutes which 
is presently impractical for real time processing. Consequently, the original BM is required to be 
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modified in order to overcome the disadvantage. For that reason, the MBM has essentially been 
developed. 
 

 
Fig. 6. Comparison of the directional spectra between buoy with BM and MBM at observed point A. (The 
contour lines are drawn for every 1/10 of the range from 0 to maximum value of the directional spectrum) 

 
 Before the MBM was applied to all observed point A to I, Lukijanto et. al21) first estimated the 
directional spectra at observed point A by using BM and MBM for comparing the directional 
spectrum measured with wave buoy. The results showed that the directional spectrum measured 
with buoy and the directional spectrum estimated by BM and MBM showed good agreement. 
Almost similar shape was observed by three different methods (buoy, BM and MBM), even though 
the estimated frequency spectra were found a little bit different. The directional energy distribution 
estimated by BM and MBM were almost consistent with the one measured with buoy, where the 
main peaks were found also in a good agreement as shown in Fig. 6.  

  

 
Fig. 7. Examples of the directional spectra estimated by Modified Bayesian Method (MBM), before the 
boundary value at the lower frequency are given. 

 

 Furthermore, the MBM was examined by applying all observed points A to I. The results 

show that the directional spectrum at observed point A is quite good, as drawn in Fig. 7. It might be 

that the location of observed point A was not so far from the radar locations and the signal to noise 

ratio seemed to be high so that the reasonable directional spectrum could be well estimated. 

Unfortunately, the results were not always suitable when the MBM were applied to other observed 

points. In other words, strange directional spectra are obtained at observed points B to I. 



182                       LUKIJANTO, N. HASHIMOTO and M. YAMASHIRO 

 The possible explanation for such features occurred may be that Doppler spectra may include 

little information of the lower frequency component. That is, the Doppler radar measures wave 

component having the wave-length of about 6 m. For that reason very long waves may not possible 

to measure. In actuality, there was little energy in frequency spectrum measured with buoy5). On the 

other hand, as described in Eq. (28) in section 3.2, the directional spectrum is assumed as an 

exponential function having the power expressed by a Fourier series over the direction and the 

piecewise constant function over the frequency. In such case, the exponential function may not 

estimate suitable directional spectrum. Thus, by using the expression of the exponential function 

may be difficult to express the value close to zero at the lower frequency side21). Consequently, the 

numerical instabilities might occur in these particular cases. 

 

 
Fig. 8. The frequency spectrum at observed point B; (a) the actual condition before the boundary value is 
given at the lower frequency and (b) the improved result after applying the boundary value. 

 

 
Fig. 9. Examples of the directional spectra estimated by Modified Bayesian Method (MBM), after the 
boundary value at the lower frequency are applied. 

  

 Figure 8.a shows an example of the instability occurred at observed point B which 

corresponds to the Fig. 7. The numerical instability is shown clearly at the lower boundary 

frequency, as shown in Fig. 8.a. Since there is very little energy at this lower boundary, therefore to 
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eliminate the instability at lower frequency, a definite value may be given as the boundary 

condition. Figure 8.b is an example of the estimated spectrum where the boundary condition was 

given as ( ) ( )3 2, 10 m sS f θ −= at 210f −= (Hz). A proper frequency spectrum can be estimated. 

Furthermore, the similar technique was applied to all observed points A to I in order to examine the 

usefulness of the method as described above. 

 As shown in Fig. 9, generally the directional spectra and the peaks of frequency spectrum are 

properly estimated by MBM at the proper frequencies with that observed by buoy. The observed 

points A to G appeared also at the proper directions with winds. Exceptional case was only at 

observed point I where the iterative computation failed. Incidentally, on the other hand according to 

the Hashimoto et al (2003)5) among all the observation points, the iterative computations by BM for 

observed point A to I converged, as shown in Fig. 5.  

  

 
Fig. 10. Examples of the normalized Doppler spectra of the backscatter at observed points A to I from two 
radars at Master and Slave point.  

 

 Figure 10 shows the Doppler spectra correspond to the Fig. 9. As seen in Fig. 10, the first 

order Doppler spectral component are clearly seen around the second order component at observed 

points A to G. Note that at observed points H and I, the quality of the signal to noise might be very 

low and contaminated with noise because their locations were very far from the radar. Therefore, a 

reliable second order Doppler energy spectrum might not be measured during the observation. 

However, Hashimoto et al5) succeeded to estimate the directional spectra by using BM, on the basis 

of the same Doppler spectra at all observed points A to I with high accuracy. The results of our 

study suggest that the BM is more robust in presence of noise (e.g. at points H and I) than MBM.  

 In addition, it should be noted that the comparison of computation time of those directional 

spectra in Figs. 5 and 9, the MBM is found to be an efficient method for estimating directional 

spectra because it computes much faster than BM. However, the accuracy of directional spectrum 

estimated by BM seems a bit better than MBM.  
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6. Conclusions 
 

 One of the intentions of this paper is to compare the performance of two inversion methods 

qualitatively, i.e. BM and MBM, developed by Hashimoto and Tokuda (1999) and Lukijanto et al 

(2009a) respectively by identical twin experiments. The results clearly demonstrate that the 

directional wave spectra can be estimated by both methods on the basis of the Doppler spectra. In 

terms of computational costs and memory requirements, both methods have been found to differ 

greatly. The comparison suggested that the MBM was more efficient than the BM since the MBM 

is capable of executing high speed computing and reducing the memory usage. Therefore, the 

MBM has a good potential for operational application. Although, the BM is considered to be 

impractical because of its time consuming iterative computations, but the BM is accurate method to 

estimate directional spectra. 

 The BM and MBM were successfully verified with the reliable data obtained from 

SCAWVEX project. Comparisons between the BM and MBM have shown good agreement with 

the estimated directional spectrum measured with buoy. Indeed, both methods show reasonably 

good for estimating directional wave spectra from HF ocean radar. However, especially for the 

MBM, the numerical instability might occur at the lower boundary where the signal to the noise 

ratios is quite bad. Although we solved this problem by giving a boundary condition at the lowest 

frequency of directional spectrum, more efforts are still underway to overcome the instability. 

 It is interesting to note that, although the BM shows very time consuming in doing the 

computations, the BM is more robust against the presence of noise than the MBM. Further works 

involving these studies, verification of the MBM is being undertaken for validating to the actual 

field data with a number of different radar systems in a number of different locations. 
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