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Abstract

A comparison of two methods, Bayesian Method (BMJ aviodified
Bayesian Method (MBM), for estimating directional waspectra from high
frequency (HF) ocean radar has been carried outerdms of validity and
applicability, the two recent approaches are coegbatheoretically and
numerically with the equation derived by Barrick T29. The results show that
the performances of the BM and MBM are adequatetydgd@his comparison
suggested that the MBM was more efficient than the 8ive the MBM is
capable of executing high speed computing and iedute memory usage.
Accordingly, the MBM has a good potential for op&maal application. The
accuracy and suitability of both the methods ase abmpared to reliable field
data of SCAWVEX's project. The results indicatet ti@ estimated directional
spectra by using the BM and MBM well agree with tlesult from buoy.
Although the BM is very time consuming to estimabectional spectra from
Doppler spectra, this method is more robust ingtesence of noise than the
MBM.

Keywords: Bayesian Method, Directional wave spectrum, Spect HF radar,
Wave observation, Wave data analysis, Current measamt

1. Introduction

The potential of high frequency (HF) oceanic rattas been recognized since Crombie
observed and identified the distinctive featurepatkscattered Doppler speéirdhe first exact
derivation of the formulation was mathematicallyided by Barrick retaining to the relationship
between the Doppler spectra and the directionakevepectrd. Since then, methods for estimating
directional wave spectrum from HF oceanic radarehagen developed to interpret the backscatter
information in terms of these theoretical relatioips.

In principle, ocean wave directional spectra carektimated from the first and second-order
Doppler spectral components by inverting the iraégruation which relates ocean wave spectrum
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to the Doppler spectrum. A number of approachee limeen developed to provide theoretical and
numerical formulation for estimating the directibmave spectrum from HF radar. Most, however,
are yet unable to reflect practical application.efhthave been developed so far to estimate
directional wave spectrum based on the Barrickigdiized integral equatiot?, with many of
advantages and limitations. As adopted by Lipa Badick®, Wyatf), and Howell and Walsh
those three studies attempted to estimate diredtiomve spectrum by employing the linear
inversion. On the other hand, HisAkind Hashimoto metho¥3 adopted the nonlinear form.

Hashimoto and Tokudalescribed details of mathematical theory of thee®#@n Method for
estimating directional wave spectra. The conce® assumed to be an exponential form having
piecewise constant functions with respect to tlegudency and the directional angle. The principal
advantage of the Bayesian Method, as one of the accsirate and reliable methods provided good
accuracy and more powerful result for in-situ measwent?, is that it can be applied without
introducing empirical parameters such as thosednited by Hisaki's method. Unfortunately, this
developed method is currently considered time-comisg for iterative calculatich

To resolve this problem, a different approach wassidered by Lukijanto et &l who
expanded another inversion scheme, so called MubifBayesian Method, for estimating
directional wave spectra from HF ocean radar. Tlopgsed method was developed by introducing
a similar formulation of Maximum Entropy PrincipleMEP) presented by Hashimoto and
Kobuné? which was applied successfully to estimate dicetl function. Therefore, in terms of
suitability and accuracy, it is thus possible tokmaomparisons between the two developed
methods, i.e. Bayesian MethHddind Modified Bayesian Methdd (hereafter, BM and MBM
respectively). Further, the application of both Ineels for estimating directional wave spectra from
HF radar to actual field data will be describedafsthis work.

The aim of the present study is focused on evialgatomprehensively the existing analysis
approaches of the BM and MBM. The fundamental déqoatfor Doppler and directional wave
spectra interpretation is presented in sectiore2tien 3 reviews these two methods presented and
examined in the paper. The numerical computatioth simulation, and the verification of the
presented methods will be given in section 4 angsbectively. Finally, the conclusion is described
in section 6.

2. Fundamental Equations

The ocean surface waves consist of various componaves with different frequency and
propagation direction. The Doppler spectrarfw) , obtained by HF radar represents the energy
distribution of the radio wave signal backscattebgdthe ocean surface waves at the angular
frequency w, and is expressed by the summation of the firdeocomponentg® («w), and the
second-order componert!?(w), i.e.,o(w)=oc®(w)+0®(w). The relationship between the
Doppler spectra and directional wave spectra isherattically expressed by the following
equations for deep water conditichs

o (@) =2°7ik 3. S(-2mk,, 000 -, ) (1)

m=x1

o?@ =27 Y [[IT sk, sk ,)
m,m,=£1 (2)

x&(w-m+/gk, —m,/gk,) dpdg
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where k, =(k,,0) is the absolute value of the wave number vecdkqr of radio waves,
S(k) = S(k,,k,) is the wave number spectrum of ocean surface wandsaw, (:\/ﬁ) is the
Bragg angular frequency. The independent variabpemdg, of the integration represent
coordinates, each of which is parallel to the afithe radar beam and orthogonal to the radar
beam respectively. The wave number vectors for magavesk, andk ,, are related to these
variables by the following equations:

k1:(p_koa q)a k2=(—p—k0, _q) (3)
These relations indicate the Bragg’s resonanceittonaxpressed by
k,+k,=-%, (4)

The coupling coefficientl , shows the degree of the contribution from the av@emponents
having the wave numbdr, andk , to the second-order energy distribution of thekiaattered
radar signal, and commonly expressed by +I, ?, the summation of the electromagnetic
scattering effectl ., and the hydrodynamic scattering effec, .

Since the first-order componen?(w) and the second-order componeftt(w) appear in
different frequencies in the Doppler spectrafw) , they can be separated; even though they are
small in magnitude. Consequently, valuable oceamgc information such as surface currents
and waves can be obtained from the respective rsmecomponents. As shown in Eq. (2), the two
component waves having the wave number veki@ndk ,are related to the second-order
component® (w).

a) 7>1.0 or > a, b) 7<1.0 or @< @,

Q

Fig. 1 Frequency contours versus wave numbers, for twewaetorsk, andk , producing
second-order component for normalized Doppler spm:(ly = w/a)s) ,a)n>1land b)p<1.

The illustrations of infinite combinations &f andk ,which are relevant to the Doppler
frequencyw under the restriction condition @ function included in Eq. (2) and the resonance
condition of Eq. (4) are shown Fig. 1. As has expressed from Eq. (2), the two componentga
having the wave number vectok,andk,, are related to the second-order scattering
componenioc®(w) . This means that Eq. (2) includes the contribigiohan infinite numbers of
component waves having different frequencgnd propagation directiah, and hence in principle,
the directional spectrum can be estimated baseatisimformation. When the directional spectrum
is estimated based on Eq. (2), the following protdarise:



166 LUKIJANTO, N. HASHIMOTOnd M. YAMASHIRO

1) Due to the constraint of th@ function, the integration of Eq. (2) must be exedutlong a
curve on the “frequency direction” plane into whitie wave number plane is transformed by
the dispersion relationship. The digitization of ihtegral of Eq. (2) is therefore complicated.

2) This is a so-called incomplete inverse problem Iriclv the number of unknown parameters is
much larger than that of equations obtained fromrtfeasurements. This sometimes causes
the problem that even a small measurement errotdasmriously deteriorate the reliability of
the estimate.

To estimate directional spectrum from HF radamad#tis necessary to solve a complicated
two-dimensional nonlinear integral Eq. (2). Sincg. E2) includes the contributions of infinite
numbers of component waves having different fregigsw and propagation directior; thus
we will focus on the second-order scattering conembw® (cw) and introduce a method for
estimating directional wave spectra from this sekcorder scattering component. In this study,
deep water waves have been examined. Besides,dtiedndeveloped for deep water waves can
be easily extended to shallow water waves.

For mathematical convenience, the parameters@ralimensionalized by the Bragg angular
frequency,w;,, and the doubled wave number of the radio wakg, as follows:

1)
£

wl w, IZ~:~k 1(2k,) } )
=T I(2k;), SK)=(Z,)'Sk)

The integration of the second-order component E8) (ith respect to the two
variablespandg axis can be transformed into a single variable esitie integrand includes the

delta functiond . If the wave propagation directid® of the wave number vectdr, is adopted as
a single independent variable for the integratfap, (2) can be transformed as follot¥s

a?(@ = 66,08, (6)
where

Ge.@) =167 IF 1{Smk, BmK,)

e @)
+SmKHSmMK N} yldy dn] ]
-1

dy| _ y(y* +cosq) |

=1+ 8
‘dh M (y* +2y? cosd, + 1j"¢| ®
and y=\/z. y can be obtained by solving Eq. (9).

O-my-m,(y* +29* cosh, + 1j* = ( €)

IZi * is the nondimensional symmetry wave number veartoRi with respect to the radar beam
axis (thep—axis). An upper limit of integration can be given b§ =7 when®<2,and
6, =m-cos" (2/&* )when &> 2, respectively. The wave number spectr8tk) in Eq. (7) can
be transformed into the frequency-direction speutr(directional wave spectrung(f,d) as
follows:
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__ g

Skk) = WS(f ,0) (10)
Thus, by imposing the directional wave specti®M,d), the second-order component

o (w) measured by the HF radar can be theoreticallyutztied by numerical integration of Eq.

(6).

3. Analysis Methods for Estimating Directional Wave Sectra

A formulation and procedure to evaluate the Bamesnethods for estimating directional wave
spectra from HF radar, based on Hashimoto and Tdkadd Lukijanto et &P, are presented in
this section:

3.1 A Bayesian Method (BM)

In the original BM, directional spectrum is treditas a piecewise constant function with
respect to each energy component of frequency arettidn, including M xN unknown
parameters. HereM is the number of frequency segments, wihNlés the number of direction
segments). The problem for estimating directional wave spaut with HF radar is to estimate a
non-negative solution ofS(f,d) based on simultaneous integral equations of Eq.sék)up
for 6 ®(@) . Although, generally the directional wave spectrisi8(f,8) =0, in this study, it is
treated asS(f,8) >0, and assumed to be exponential piecewise condtanttion over the
directional range fron® to 277 and the frequency range froffy. to f . *. In addition, this
assumption is commonly employed in numerically gatieg random waves.

S(f.8)=a) > explx;)d; (f &) (11)

i=1j=1

wherex ; =In{S f, §)/a} , M is the number of segmemt$ of frequencyf, while | is the
number of segmentsd of directiond , and

1: f,<f<f andf_<6<8,
g,(f.6)= _ (12)
' 0: otherwise
a is a parameter introduced to normalize the magaitfdx ; , and given by
froax (277
[ ™[ s(f,6)didg
= 2 (13)

| i :”dfde

‘min

The numerator on the right hand side of Eq. (B3approximately given by the following
equation®

2[ {0 (@) W(el @,)} dew

kjj:a(“(a))dw

| ff”“ j:”S( f,0)dfdg = (14)
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where W(w/ «w,) =8|T* | /k? is a weighting function andl is an approximate coupling
coefficient of I *®. The frequency and the directiond are discretized by the following
equations respectively.

f=Inf =Inf +Af, 6 =6_+A76 (15)

Substituting Eq. (11) into Eqg. (6) yields an img equation including unknown
variablesM x N. After digitizing the Eq. (6) by replacing the intagjon with the summatio ,
the integral equation can be approximated by thelimear algebraic equation. However, it is
unrealistic to assume that the energy distributiear wave frequencyand wave propagation
directiondcan be discontinuous. Th&f,8)is generally considered to be a continuous and
smooth function.

The integral of Eqg. (6) is, however, a curvilindategral where the integration must be
performed along a special path(iin 8) plane due to the restrictions of Egs. (4) and £.
mentioned earlier, Eq. (6) includes a singular pand has to be integrated with smaller segments
around the singular point. In discretizing Eq. (®g value of the directional wave spectrum along
the path in(f, @) plane is linearly interpolated by the neighboringdgpoint values of the
directional wave spectrum in the same way as HRa&nd expressed by

S(u.6)= 1-&) S O)+& S, H) 16
+1-6)¢ S(lui 'Hj+1)+5 ¢ S(ui+1 lej+1)
where y=Inf, 0< & and{ < 1. Eq. (6) can therefore be digitized with respecthe grid point
values of S(44,6;) with the desired degree of accuracy.
Finally, by taking into account the errorg of the Doppler spectrum, the integral Eq. (6) can
be approximated by the nonlinear algebraic equatictuding the unknowrK = (% 4,---,% ; ),
and expressed by:

a2 =F (X)+ &, (17)

where the suffixk indicates a value of the Doppler frequendy (k=1,--,K). The errors &
(k=1,--,K) of every Doppler frequencyy, are assumed to be independent of each other and
their occurrence probabilities can be expressea laprmal distribution having a zero mean and
varianceA?. Then, for a giverd\? (k =1,--- ,K ), the likelihood functions ofX and A? is given

by:

K

a1 1 ) 2
L(X;A%) = ToiiF exp -~ 5 kZ:;{ P -F, (X} (18)

It should be noted that the directional wave speceS(f,d) has thus far been expressed by a
piecewise constant function, with the correlatie@tween the wave energy of each segment of
Af xA@ not yet having been taken into account. As direetiovave analysis is commonly based
on the linear wave theory, it can be assumed et ef energy on each segment is independent of
each other. In generalS(f,8) is considered to be a continuous and smooth fomciihis allows
an introduction of an additional condition that theal variation of x ; (i =1,---,1;j =1,;-- ,J )can
be well approximated by a smooth surface so thatvedue given in Eq. (19) is expected to be
small*?.
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X ja1 T Xanj ¥ o1t Xy —4% (19)

In the upper boundaryi €1 ) and the lower boundaryi €1) of the frequency , the value
given in Eqg. (20) is expected to be small as arpcondition.

% 41~ 2% ) t X% jo1 (20)

These additional conditions lead to

| -1

ZZ(Xi,j+l+Xi+l,j X% -1t X1y —4% j)2
= 1)

"‘Z Ko~ X +X1J—1§+Z € e XX o 1§ - sma
j i

(where X o =% 5, %1% 3-1)

From algebraic viewpoint, Eq. (21) can be writterihe matrix form, as
IDX [f (22)

whereD is the coefficient matrix of Eq. (21). It is, théwee, surmised that the optimal estimate of
S(f,8) is the one maximizing the likelihood function od.§18) under the condition of Eq. (22).
More precisely, the most suitable estimate is giwmna set ofX =(x 3+, % ; Y which
maximizes the following equation for a given hypeametern? .

In L(x;/12)—2“/]—22||Dx IP (23)

The hyperparameten? is a type of weighting coefficient which represetite smoothness
of X, where large or small values of respectively, give an estimate of the directionalve
spectrum having either smooth or rough shapesoltld be noted that Eq. (23) corresponds to the
Bayesian relationship expressed by the followingiagign when we consider the exponential
function with the power of Eq. (23).

Prost(X [U%,A%)=L(X;A%)pX |u®,A?) (24)

where ppost(X |u?,42) the posterior distribution, andg(X |u?,A?) the prior distribution of
X =(% 1% ) expressed by

1xJ 2
p(X|u2,/12):(\/%M] exp{—% IPX ﬁ} (25)

The estimateX obtained by maximizing Eq. (23) can be considesisdthe mode of the
posterior distributionppag(X |u?,42). Now, if the value ofu is given, then regardless the value
of A2, the values of X that maximize Eq. (23) can be determined by minringj
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ZK]{ 52 -F (0} “+u? 10X [F (26)

k=1

Eventually, from the view point of the suitabilignd smoothness of tieestimation, the
determination ofu and the estimation of1?> can be automatically performed by minimizing the
following ABIC (Akaike’s Bayesian Information Critien)'®:

ABIC=—2InjL(X|A2)p(X [u2,A2)iX 27)

3.2 A Modified Bayesian Method (MBM)

The major distinct modifications are describedthis section which focuses to reduce the
computation time by modifying the formulation ofetldirectional spectrum and the procedure of
iterative computation. Here, with regards to ﬂﬂé ,9) in Eq. (10), a new formulation of function
expressed by Eq. (28) was developed by introduairsgmilar formulation of Maximum Entropy
Principle (MEP) described by Hashimoto and Kob@n&he determination of the directional wave
spectrum from HF radar can then be achieved bynthersion of Eq. (6) using the similar way as
described by Hashimoto and Tokdddrom this point of view, Lukijanto et &l expanded the
directional wave spectrum function, as an expoaéfitinction having the power expressed by a
Fourier series over the direction while piecewisastant function over the frequency:

S(f,,0) = exp{a0 (f )+i{ a, (f, )cokd+h, ¢ )sirk@}} (28)

k=1

wheref, is wave frequency discretized by the Eq. (15), mdale a, (f,)and b (f,) are unknown
coefficients to be estimated.

In this caseM is assumed to be the number of frequency segment& as the number of
Fourier series, and then the number of unknownficierfits become ><(2K +1). Hashimoto
and Kobun& explained that although the number of Fourieresetised< =1, not only the narrow
single peak directional spectrum, but also veryewahergy distribution was accurately shown.
Substituting Eq. (28) into Eq. (6) yields an intggrequation including unknown
coefficientsa, (f,)and b (f,). Here, fine segment around the singular point essarily adopted
to have accurate calculation. Similar way to the,BNe integration must be performed along a
path in( f,6) plane as described in section 2, due to the résmicondition ofd function included
in Eqg. (2). Afterwards, Eq. (6) can be digitized ttwirespect to the grid point values
of S(x4,6,) described in Eq. (16). Then, by taking into accaheterrors & of Doppler spectrum,
the integral of Eq. (6) can be approximated by hie@ar algebraic governing equation including
the unknown variable(:[ao(fi),ak(fi)&h(( f); i=1,...M ,k:1,...k} which is expressed and
corresponds to the Eq. (17). Moreover, the likedihdunctions of X and A? is also given by
similar to Eq. (18).

Although different assumption of the energy disition over propagation direction was
applied to the MBM, each component in frequencl timains discontinuous. Howeves( f , §)
is generally considered to be a continuous and #mfumction in both frequency and direction.
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This allows an introduction of additional condit®that the coefficients af (f;) andb, (f, )in Eq.
(28) are locally continuous between adjacent freqigs in directional spectrurﬁ( f ,9). Hence,
the following values can be assumed to be small:

a (f..)-2a (f)+a.(f_) - small } (29)
t&(fiu) _Ztk (fi )+bK (fifl) - small

Under this assumption, Eq. (29) is not valid ftwe tlower Iimit(i =1) and the upper
limit (i = M) of frequencyf, In this caseg, (f;) andb, (f,) become a type of boundary conditions.
Therefore, these boundary conditions have to begstp given. However, it is difficult to give
those values in advance before the estimation.ri#dtevely, other assumption may be applied to
give the boundary values.

When the order of the Fourier series in Eq. (8&,ithen the number of unknown parameters
becomed x (2K +1),and the equation assumed in Eq. (29) wil(Me-2)x (2K + 1), while the
number of fundamental equation with respect tosheond order componeat? (w) is L. Thus,
under the condition ofL+(M -2)x (2K +1)=M x (X + 1), the boundary parameters of
a (f,) andb (f,), a/(f,)andb(f,) may automatically be estimated using the least regua
method. Unfortunately based on our investigatiotiss method sometimes causes unstable
estimation of the coefficieny, (f,) andb, (f;). For convenience; therefore the following
conditions are assumed to be small at the bourfdegquency ofi =1 andM :
ak(fi+1) _ak( fi) - small } (30)
bK(fi+1) _bk(fi) - small

These conditions impose a small energy change leetwee adjacent frequencies at the boundary
frequencies. In the following, an operational matd is introduced for conveniencd® is an
operational matrix which expresses the conditiorEg6. (29) and (30). Therefore, if the value
obtained by||DX |f is small, the results of directional spectrumraation appear to be smooth.
Thus, it is supposed that the optimal estimateS§f,6) is the one that maximizing the likelihood
function of Eq. (18) under the condition of Eq. Y22 the same way as BM. More precisely, the
most suitable estimate is given as a sexe:f[ak(fi)& b.( fi)]t which maximizes the equation for a
given hyperparameten?® as shown in Eq (23). Based on the posterior digtiob as defined in Eq.
(24), the prior distribution oX can be expressed as follows:

. u Mx(2K +1) 0
p(X|u,A )_(ﬁ] exp{-ﬁ IPX fl} (31)

The estimate X obtained by maximizing Eq. (23) can be consideredhe mode of the posterior
distribution ppost(X [u®,A?). Now, if the value ofu is given, regardless of the valuedf, the
values of X that maximize Eq. (23) can be determined by miningj:

¥ {9 —F, 00} “+u DX If (32)

1=1
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Moreover, by minimizing the ABIC in Eq. (27), tdetermination ofu and the estimation of
A? can be automatically deduced also. Based on tbeeadnalysis, we can summarize that the
inversion problem of the BM and MBM are literallymslar in methodological sequences. The
detail numerical calculations as well as the dismuss of some ideas for improving them are
briefly described in the following sections.

4. Numerical Computation Procedures
4.1 Linearization of Equations to be Solved

This section provides computational informatiom@abthe two developed techniques. Before
doing this, an overview of the numerical computagiovill be presented and important features of
the procedures will be highlighted. Numerical comapons were conducted to estimate the
directional wave spectrum using the BM which regsiiminimization of Egs. (26) and (27); the
similar procedure is applied to the MBM for Eqs2)&nd (27). However, it is impossible to carry
out them analytically.

Since the first term on the right-hand side of EL{) is nonlinear with respect ¥, it is
linearized using Taylor expansion arourX|,, having value close to estimate solution
of X=[%,...%, | and X=[a,(f,)&b(f)] for the BM and MBM respectively. It can be
written as:

F (X) = F (X,)+G (X,) (X =X ) (33)
in which:
G, (X,) =] OF (X)/x, ,,--,0F (X )/0x ‘J]X:XO (34)

Substitution of Eq. (33) into Eq. (17) and reagament in the matrix form give the following
linearized equation with respect to tke

B=AX+E (35)

where

A:[Gl(XO),...,GK(XO)], E:[gll"'ny]l,

5(2) ~(2) t (36)
B=|:Jl “F (X)) +G (XX o -+, 0" —F K )G (K X o]
Therefore, the Eq. (26) and Eq. (32) for the BM 8#8IM respectively, become:
W(X) =l|AX -B [f +u® [PX f (37)

4.2 Some Madifications for Improving Iterative Computation

The initial value has been modified to minimize. E§7). As described in Hashimoto and
Tokud&, for given u in Eq. (37) and Eq. (27) in our numerical methadtie, optimum valueX
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can be estimated by the least-squares method. Hawwearticularly for the MBM, different
expression has been possibly proposed for Eq. 83nodifying Egs. (29) and (30). That is, an
alternative expression is introduced by introduci¥=X —X,. Then, another form of Eq. (33) is
redefined and expressed as:

Fk(x):Fk(X0)+Gk (XO)AX (38)

In this caseB is defined asB=[g?-F(X,),...d,? -F (X O)T and Eq. (35) becomes
B=AAX+E. This is the linear equation with respect to k¢ Therefore, the alternative
additional conditions for Egs. (29) and (30) mayused with respect to th&X :

Aa,(f,.,) - 20a, (f,)+4a,(f,,) - small A3 (f,.,) - 20, (f,) - small
Ab,(f,,,) - 20D, () +Ab (f_,) — small | and Ab,(f,,)-2Ab ()~ smal
(i=2,..M-1) (=1 and M)

Note that after rearrangement, a new matrix formhlmdeduced as:
W(AX) =[|JAAX -B |} +u® |PAX f (39)

Egs. (37) and (39) seems to be very similar exaaghown variableX and AX . Actually, the first
term in the right hand side of the both equatioress same. However, the minimization of the
second terms in each of Egs. (37) and (39) hasrdiff meaning. That is, although the
minimization of the second term in Eq. (37) expédtis smoothness and the continuance of the
directional spectrum itself. Meanwhile, the ondcim (39) expects the smoothness and continuance
of the difference of the directional spectrum betwehe successive iterative computations. The
success of this modified method with Eq. (39) wesadibed in Lukijanto et &l.

4.3 Estimation Procedures for a General Data Set

According to Hashimof®, the least-square method is carried out for E8jg) &nd (39) via
Householder transformation by transforming a matoidan upper triangular matrix by repeating a
mirror image transformation as follows.

Although, the following procedures are explained the minimization of Eq. (37) of BM,
X is to be replaced X for the minimization of Eqg. (39) of MBM. Then, E¢37) can be
rewritten as:

A B
X _
ubD 0
For convenience, the following matrix is assumed:

A B
Z_[UD 0 } (41

2

W(x) = ‘ (40)
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Afterward, the Householder transformation is agpbech that the following matrix is obtained:
Sy - Sikn

Uz = - : (42)
0 S<+1,K+1

whereU denoted the transformation operator. Eq. (40)than be rewritten as:

2

2 %.,I Sl,K Xl SA,I.(+1

o - S(,K XK S(+1,K+l

N

S1 o Sik [ X1) [ Skt
- : : : + S§+1,K+1 (43)

0 - Sk )\ Xk Sk K+
As the second term of the right hand-side of E®) (4 independent of , the estimate ofX

which minimizes Eqgs. (39) or (40), is obtained bivsg Eq. (44).

Sa o Suc | Xa) [ S

. : D= : (44)
0 S(,K XK S(,K+l
The estimate variance of the residdaf, in Eq. (39), is calculated by using
OA-Z = S2K+1,K+l/(2N) (45)

Thus, the ABIC (Eq. 27) can now be calculated.dayloting,& andB as the final coefficient
matricesA andB used to determine estimafe the right-hand side of the posterior distributteaq.
(24) can be expressed as:

:( 1 j exp{—i”,&x—é”z}( = jK exp|—u_2||DX||2} (46)
2 20° NPY o 242

|

Applying
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~ 2
o 1 |(A )
_ o)\l ta
Loexp{ = (uD)(x X) }X .

= (V2o )" {det(AtA +uD'D )} E

and integrating both side of Eq. (46) with resgecX gives

j:L(X,JZ)p(X| u?, g2 )dx

(1) L Nas 28 + u2lox P ARt L 2ntn ) 72 )
O e e o It RPN
From these results, the ABIC given in Eq.(27) beesm
ABIC =-2in [~ L(x,0? ( 2 2)d
n.[_oo (xa )p x‘u o°|dx )
= 2Nin( 2m%) - K In{u2) +-S{ | A% B[ +u?[pk [} + n{ de A'a + 00
The estimate of the variancejf) which minimizes the ABIC is obtained by solving:
i (G A 0

with the solution being the optimal estimate of minimizing the ABIC. Thus, the estimaf® is
= % -8 +u2[px |} (51)
=— - +
ant A% -8 +*[pX]
Finally, the resultant ABIC is obtained as

ABIC =2N{In( 2752) +1} -K In(u?) + In{det( A'A +u?D'D )} (52)

Note that Eqgs. (51) and (45) are identical. Indbmputation of the ABIC, those are also necessary
to perform the calculation of the determinant of thatrix in the last term of Eq. (52). If the last
term on the right-hand side of Eq. (52) is directglculated using a conventional matrix
computation method, obtaining the ABIC is often oapible due to the floating-point exception
rule utilized in digital computers. Consequentlg use:

K
In{det(A'A +u?D'D)} = Z InS? (53)

i=1
WhereSYi denotes the diagonal element of the coefficientrimaEq. (42). The optimal

hyperparameteu that minimizes the ABIC is determined via trialda@rror by changingn in the
following equation.
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u=ab™ (m=12,.) (54)

wherea andb are the search coefficients, according to the Hastti and Tokud® here chosen for

the convenience as=0.1andb= 0.. Finally, the whole procedure mentioned in thistiss is

summarized as follows:

1. For a value of the hyperparameten given by Eqg. (54) and the initial
value XO(Xi =0; (i :1,...,K)), compute)A( using the least-squares method to iteratively
minimize Eq. (39). That is, foX,,a new valueX; is obtained by applying the least-squares
method.

2. Then by replacingX,, Eq. (37) is terminated when the standard deviatafn the
differenceX values in two successive steps is less t@ah The iteration of this process
continues untilX converges toX for the givenu.

3. Usethe giverf(, u andEq. (51) to determined? ), and then compute the ABIC in Eq. (52).

4. After changing the value af given by Eq. (54), then repeat the process of 1) 2n For
brevity, from various estimates of obtained through the process 1) through 3), selext
values (> andé?, as well asX which yields the minimum ABIC.

4.4 Examination of the BM and MBM by Numerical Simudation

For the purpose to compare the performance oftwle methods, i.e. BM and MBM, the
numerical simulations have been tested upon: wbilit estimate correctly, robustness and
reliability of results. Subsequently, the equattmtaining unknown parameteké x N is needed
to solve in the case of BM in whidih andN are the number of the frequency and the directiona
segments respectively. For practical convenienclntth computation time processing, basically
the too large number of segments can not be sesedBan the computational efficiency, the validity
and accuracy of the methods are qualitatively caethaTherefore, the time taken to do this
computation is the limiting factor for the practiemalysis as described in Secs. 4.1- 4.3.

Figure 2 shows the results of numerical simulation using BMio types of bi-directional
wave field are assumed where dominant energy peékbe directional wave spectrum are
assumed to be ina) different frequencies, andb) the same frequencies. The benchmark (true) of
directional wave spectra is drawn at upper panilsiele whereas the estimated one is drawn
underneath the benchmark (true) of directional wspectra. The middle and the right panel of
each figure show the frequency specti®() and the directional distribution functi@{6) in the
frequencyf =0.093(Hz)of the directional spectrum respectively. Each aiomal wave spectrum
was estimated from the two Doppler spectra whielydiency of the radar and the crossing angle of
radio signals (d0) were assumed to be 24.515 MHz &&drespectively. The significant wave
period T;,50f 5 and 12 seconds are also assumedFifpr2.a and 10 second fdfig. 2.b. The thin
lines represent the true frequency spectrum arettitimal distribution function. While the thick
lines represent the estimation.

The result shows that the estimated directionalenspectrum by using BM is qualitatively
good agreement with the true one. As showrFig 2.3 the estimated frequency spectrum is
underestimated around the energy peak. Althouglestienated directional distribution function is
overestimated around the energy peak, the locatibrenergy peaks of the estimated frequency
spectrum and the estimated directional distribufiorction are properly estimated.
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Figures 2.bshows that the estimated directional wave spectinoh directional distribution
function perform similar trend with that assumedoin different frequencie&ig. 2.a) However,
the estimated frequency spectrum is underestimatednd the energy peak. From the numerical
simulation, we concluded that the BM has demoretrdb be a stable and reliable method for
estimating directional wave spectra from Dopplezcta. However, the disadvantage of BM is a
time consuming method related to the matrix cattaaof Eq. (37) as discussed in Secs. 3 and 4.
Thus great computational efforts have to be takémaccount.

a) The dominant energy peaks are assumed to be in different frequency
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Fig. 2. The directional wave spectra estimated by usingeBayn Method (BM) where the dominant energy
peaks of directional wave spectra are assumed to (@ different frequency and (b) same frequeatthe
different crossing anglé75 )of two beam axes (described by Hashimoto and Tokgdahe thin lines
represent the true frequency specti®() and directional distribution functidg(d) . While the thick lines
represent the estimation ones.

In order to verify effect of the modifications deded in section 3.2, extensive tests were
done to analyze the accuracy and applicabilityhefMBM compared to the previous BMigure
3 shows bi-directional wave field calculated by MBMing Eq. (39). The same conditions are set
to be equal to those &ig. 2.

The results show that the estimated directionalenspectrum is qualitatively good agreement
with the true directional wave spectra. The estaddtequency spectrum is underestimated around
the energy peak. However, the slight excessivegyneas estimated at the lower frequency side.
The numerical result where dominant energy peakbefdirectional wave spectrum are assumed
to be in different frequenciesig. 3.9 shows that the estimated frequency spectra parfpod
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enough with those assumed to be in the same freseifig. 3.b). Although the estimated

directional distribution function shows a littlecionsistency results, the estimation accuracy is
acceptable in practical application.

a) The dominant energy peaks are assumed to be in different frequency
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Fig. 3.As for Fig. 2 but estimated using MBM described by Lukijanto ébal

Based on the results, the BM and MBM have sugdesiat there are reasonable agreements
between the true and estimated directional wavetspen terms of the energy spectrum, as
illustrated inFigs. 2and3. In addition, in the estimation of the directiosglectrum using a BM, a
normal personal computer takes tens of secondsmpute the directional spectrum even in the
case olM=N=16. Meanwhile, in the case Bf=N=32, it takes several minutes to compute which is
presently impractical for real-time processingotder to reduce the computation time, the MBM is
subsequently applied. The results showed that anmeyus amount of computation time can be
reduced by using MBM. The estimation of the directil spectrum was obtained within several
seconds. This computation time demonstrates 100@ tiines faster than using BM, which is
permissible for practical use. Having such propsrtthe MBM are capable of executing the high
speed computing and consequently possible to rechemory required for computations. The
important point can be suggested that the MBM perfomore efficient than the BM. Accordingly,
the MBM has a good potential for operational apglan.

From the abovementioned explanation, the MBM may out to be not only accurate and
reliable but also practical method for estimatingectional wave spectra from HF radar.
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Additionally, in the following section the accuraeyd suitability of both methods, the BM and
MBM, will be verified with actual field data obtaéd from the SCAWVEX project.

5. \Verification of Applicability of MBM with SCAWVEX's Data
5.1 SCAWVEX Project

The data set was collected by the Surface Currewt Wave Variability Experiments
(SCAWVEX) project with the data quality consideredbe reliable enough and confirm@dFor
that reason, these data were selected to demanshatvalidity of the BM and MBM. In this
project, advancing coastal HF radar applications aree of the objectives of SCAWVEX.

Observations by these HF radars were made at tbesitws at Holderness in the United of
Kingdom (UK) located on the east coast of the UK &acing the North Sea shown fiig. 4. The
observed points A to | are indicated for which diienal wave spectra will be computed by using
BM and MBM. The stripe symbol denoted by Master &tave shows the locations of HF radar
points, whereas the white circles represent the plBopspectra measurements points. These
observations were carried out from December 19%&tmary 1996.
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Fig. 4. Position of HF ocean radar systems at Master dadeSUK) and the wave buoy deployment. The
observed points Ato | are indicated for which dii@nal wave spectra analyzed by BM and MBM.

The observation data obtained at 14:00 on Decenidgr 1995, are used where the
bi-directional wave fields were formed at 00:00. réported by Hashimoto et’albefore and after
this date, the low-pressure system was statiomatlyd sea area west of the UK. Witexplained
also that during that date, swell dominating overstrof the region propagating from north and
refracting toward coast occurred. To the southtrseasterly wind waves dominate. In addition to
the HF radar systems, a wave buoy (m@rkhas also been deployed at depth of 12%5rfihe
wave buoy was deployed to compare the directiopattsum estimated from Doppler spectra by
BM and MBM across the region.

Hashimoto et aP reported that the observation was carried out faniButes at each station
and repeated every twenty minutes providing 896pait samples at each measurement point. To
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estimate the Doppler spectra, 512 sample FFTs uszd with a 75% overlap to provide 4 spectra
for each five-minute period. Three successive fimmute collections were then averaged to
provide an hourly averaged (from 12 individual) Ptgy spectrum. In SCAWVEX, the method
developed by Longuet-Higgins et%Mwas used to analyze the directional wave data umedsy
buoy. The resultant Fourier coefficients for theediional spectra have been preserved as the
parameters of the directional spectra. Based osetl@urier coefficients, we applied the method
developed by Kim et & to obtain the directional spectra using the MaximEntropy Principle
method?. Details of the analysis of the wave data and adgatjpns of the directional wave spectra
with BM can be found in the previous study repoftgdHashimoto et al

5.2 Directional Spectrum Estimations

Throughout this work, the nonlinear inversion withe BM and MBM developed by
Hashimoto and Tokudkand Lukijanto et aP respectively are applied to the Doppler spectra
measured in the SCAWVEX data as mentioned abovéhdHiollowing, we estimate the directional
spectra from observed points A to | as showrFig. 4 in order to verify the applicability and
accuracy of the both methods.
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Fig. 5. Estimation of directional wave spectra by Bayesitethod (BM) at observed points A t6.

Doppler spectra used in this study were analyzétjyzrocedures as described in Hashimoto
et aP, in which the reliable directional spectra at obsd points A to | were successfully estimated
by BM widely distributed in those areas, as showifig. 5. The results showed that directional
spectra could be measured consistent in the pripections with the swell and the wind waves
propagating.

It should be noted that for each numerical compataby using BM, the accuracy of
numerical estimation depends on the assumed nuoflgarameters. However, for instance, in the
case ofM=N=16, the computation time required was about teorsgs which is permissible for
practical use. Meanwhile, in the caseMdtN=32, the computation time took several minutes Whic
is presently impractical for real time processi@@nsequently, the original BM is required to be
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modified in order to overcome the disadvantage. tRat reason, the MBM has essentially been
developed.
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Fig. 6. Comparison of the directional spectra between buity BM and MBM at observed point A. (The
contour lines are drawn for every 1/10 of the rafigem 0 to maximum value of the directional spectju

Before the MBM was applied to all observed poirtbA, Lukijanto et. & first estimated the
directional spectra at observed point A by using BhWd MBM for comparing the directional
spectrum measured with wave buoy. The results stidha&t the directional spectrum measured
with buoy and the directional spectrum estimatedBd and MBM showed good agreement.
Almost similar shape was observed by three differeethods (buoy, BM and MBM), even though
the estimated frequency spectra were found a bitldifferent. The directional energy distribution
estimated by BM and MBM were almost consistent vifth one measured with buoy, where the
main peaks were found also in a good agreemeritaagrsinFig. 6.
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Fig. 7. Examples of the directional spectra estimated kpdified Bayesian Method (MBM), before the
boundary value at the lower frequency are given.

Furthermore, the MBM was examined by applyingadkerved points A to I. The results
show that the directional spectrum at observedtpbils quite good, as drawn Fig. 7. It might be
that the location of observed point A was not sdfiiam the radar locations and the signal to noise
ratio seemed to be high so that the reasonabletidinal spectrum could be well estimated.
Unfortunately, the results were not always suitattten the MBM were applied to other observed
points. In other words, strange directional speateaobtained at observed points B to I.
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The possible explanation for such features ocdumay be that Doppler spectra may include
little information of the lower frequency componeiihat is, the Doppler radar measures wave
component having the wave-length of about 6 m.tkat reason very long waves may not possible
to measure. In actuality, there was little energfréquency spectrum measured with blio®n the
other hand, as described in Eq. (28) in section $h& directional spectrum is assumed as an
exponential function having the power expressedalfyourier series over the direction and the
piecewise constant function over the frequencysuoh case, the exponential function may not
estimate suitable directional spectrum. Thus, bpgushe expression of the exponential function
may be difficult to express the value close to z&rthe lower frequency sitfe Consequently, the
numerical instabilities might occur in these pariéc cases.
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Fig. 8. The frequency spectrum at observed point B; (e)attual condition before the boundary value is
given at the lower frequency and (b) the improweslitt after applying the boundary value.
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Fig. 9. Examples of the directional spectra estimatedMndified Bayesian Method (MBM), after the
boundary value at the lower frequency are applied.

Figure 8.a shows an example of the instability occurred aseobed point B which
corresponds to th&ig. 7. The numerical instability is shown clearly at ttmver boundary
frequency, as shown fig. 8.a Since there is very little energy at this loweuhdary, therefore to
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eliminate the instability at lower frequency, a idg#é value may be given as the boundary
condition.Figure 8.bis an example of the estimated spectrum where thedasyrcondition was
given ass(f,e):ms(ng atf =107 (Hz). A proper frequency spectrum can be estimated.
Furthermore, the similar technique was appliedltolzserved points A to | in order to examine the
usefulness of the method as described above.

As shown inFig. 9, generallythe directional spectra and the peaks of frequepegtrum are
properly estimated by MBM at the proper frequencigth that observed by buoy. The observed
points A to G appeared also at the proper direstisith winds. Exceptional case was only at
observed point | where the iterative computatidleéa Incidentally, on the other hand according to
the Hashimoto et al (2008)among all the observation points, the iterativenpatations by BM for
observed point A to | converged, as showFim 5.
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Fig. 10. Examples of the normalized Doppler spectra of thekbcatter at observed points A to | from two
radars at Master and Slave point.

Figure 10 shows the Doppler spectra correspond toRige 9. As seen irFig. 10, the first
order Doppler spectral component are clearly seenna the second order component at observed
points Ato G. Note that at observed points H gritié quality of the signal to noise might be very
low and contaminated with noise because their ionatwere very far from the radar. Therefore, a
reliable second order Doppler energy spectrum mighit be measured during the observation.
However, Hashimoto et &lsucceeded to estimate the directional spectrasingBM, on the basis
of the same Doppler spectra at all observed pdints | with high accuracy. The results of our
study suggest that the BM is more robust in preseficoise (e.g. at points H and I) than MBM.

In addition, it should be noted that the comparisé computation time of those directional
spectra inFigs. 5and9, the MBM is found to be an efficient method for ewting directional
spectra because it computes much faster than BMieMer, the accuracy of directional spectrum
estimated by BM seems a bit better than MBM.
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6. Conclusions

One of the intentions of this paper is to compaee performance of two inversion methods
qualitatively, i.e. BM and MBM, developed by Haslotm and Tokuda (1999) and Lukijanto et al
(2009a) respectively by identical twin experimeni$ie results clearly demonstrate that the
directional wave spectra can be estimated by bathods on the basis of the Doppler spectra. In
terms of computational costs and memory requiresyébith methods have been found to differ
greatly. The comparison suggested that the MBM mvare efficient than the BM since the MBM
is capable of executing high speed computing andiciag the memory usage. Therefore, the
MBM has a good potential for operational applicatidAlthough, the BM is considered to be
impractical because of its time consuming iteradwenputations, but the BM is accurate method to
estimate directional spectra.

The BM and MBM were successfully verified with theliable data obtained from
SCAWVEX project. Comparisons between the BM and MB&M/e shown good agreement with
the estimated directional spectrum measured wittiyblndeed, both methods show reasonably
good for estimating directional wave spectra from btean radar. However, especially for the
MBM, the numerical instability might occur at thewer boundary where the signal to the noise
ratios is quite bad. Although we solved this probley giving a boundary condition at the lowest
frequency of directional spectrum, more efforts stit underway to overcome the instability.

It is interesting to note that, although the BMowk very time consuming in doing the
computations, the BM is more robust against thagmee of noise than the MBM. Further works
involving these studies, verification of the MBM bging undertaken for validating to the actual
field data with a number of different radar systéma number of different locations.
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